7 research outputs found
Weighted endpoint estimates for commutators of fractional integrals
summary:Given , , and , we give sufficient conditions on weights for the commutator of the fractional integral operator, , to satisfy weighted endpoint inequalities on and on bounded domains. These results extend our earlier work [3], where we considered unweighted inequalities on
Norm inequalities for the minimal and maximal operator, and differentiation of the integral
We study the weighted norm inequalities for the minimal operator, a new operator analogous to the Hardy-Littlewood maximal operator which arose in the study of reverse Hölder inequalities. We characterize the classes of weights which govern the strong and weak-type norm inequalities for the minimal operator in the two weight case, and show that these classes are the same. We also show that a generalization of the minimal operator can be used to obtain information about the differentiability of the integral in cases when the associated maximal operator is large, and we give a new condition for this maximal operator to be weak (1,1)
Norm inequalities for the minimal and maximal operator, and differentiation of the integral
We study the weighted norm inequalities for the minimal operator, a new operator analogous to the Hardy-Littlewood maximal operator which arose in the study of reverse Hölder inequalities. We characterize the classes of weights which govern the strong and weak-type norm inequalities for the minimal operator in the two weight case, and show that these classes are the same. We also show that a generalization of the minimal operator can be used to obtain information about the differentiability of the integral in cases when the associated maximal operator is large, and we give a new condition for this maximal operator to be weak (1,1)
A new proof of weighted weak-type inequalities for fractional integrals
summary:We give a new and simpler proof of a two-weight, weak inequality for fractional integrals first proved by Cruz-Uribe and PĂ©rez [4]
Norm inequalities for the minimal and maximal operator, and differentiation of the integral
We study the weighted norm inequalities for the minimal operator, a new operator analogous to the Hardy-Littlewood maximal operator which arose in the study of reverse Hölder inequalities. We characterize the classes of weights which govern the strong and weak-type norm inequalities for the minimal operator in the two weight case, and show that these classes are the same. We also show that a generalization of the minimal operator can be used to obtain information about the differentiability of the integral in cases when the associated maximal operator is large, and we give a new condition for this maximal operator to be weak (1,1)