67 research outputs found

    Discharge of elongated grains in silos under rotational shear

    Get PDF
    The discharge of elongated particles from a silo with rotating bottom is investigated numerically. The introduction of a slight transverse shear reduces the flow rate Q by up to 70% compared with stationary bottom, but the flow rate shows a modest increase by further increasing the external shear. Focusing on the dependency of flow rate Q on orifice diameter D, the spheres and rods show two distinct trends. For rods, in the small-aperture limit Q seems to follow an exponential trend, deviating from the classical power-law dependence. These macroscopic observations are in good agreement with our earlier experimental findings [Phys. Rev. E 103, 062905 (2021)]. With the help of the coarse-graining methodology we obtain the spatial distribution of the macroscopic density, velocity, kinetic pressure, and orientation fields. This allows us detecting a transition from funnel to mass flow pattern caused by the external shear. Additionally, averaging these fields in the region of the orifice reveals that the strong initial decrease in Q is mostly attributed to changes in the flow velocity, while the weakly increasing trend at higher rotation rates is related to increasing packing fraction. Similar analysis of the grain orientation at the orifice suggests a correlation of the flow rate magnitude with the vertical orientation and the packing fraction at the orifice with the order of the grains. Lastly, the vertical profile of mean acceleration at the center of the silo denotes that the region where the acceleration is not negligible shrinks significantly due to the strong perturbation induced by the moving wall

    Active particles with desired orientation fowing through a bottleneck

    Get PDF
    We report extensive numerical simulations of the fow of anisotropic self-propelled particles through a constriction. In particular, we explore the role of the particles’ desired orientation with respect to the moving direction on the system fowability. We observe that when particles propel along the direction of their long axis (longitudinal orientation) the fow-rate notably reduces compared with the case of propulsion along the short axis (transversal orientation). And this is so even when the efective section (measured as the number of particles that are necessary to span the whole outlet) is larger for the case of longitudinal propulsion. This counterintuitive result is explained in terms of the formation of clogging structures at the outlet, which are revealed to have higher stability when the particles align along the long axis. This generic result might be applied to many diferent systems fowing through bottlenecks such as microbial populations or diferent kind of cells. Indeed, it has already a straightforward connection with recent results of pedestrian (which self-propel transversally oriented) and mice or sheep (which self-propel longitudinally oriented)

    Particle flow rate in silos under rotational shear

    Get PDF
    Very recently, To et al. have experimentally explored granular flow in a cylindrical silo, with a bottom wall that rotates horizontally with respect to the lateral wall [Phys. Rev. E 100, 012906 (2019)]. Here we numerically reproduce their experimental findings, in particular, the peculiar behavior of the mass flow rate Q as a function of the frequency of rotation f . Namely, we find that for small outlet diameters D the flow rate increased with f , while for larger D a nonmonotonic behavior is confirmed. Furthermore, using a coarse-graining technique, we compute the macroscopic density, momentum, and the stress tensor fields. These results show conclusively that changes in the discharge process are directly related to changes in the flow pattern from funnel flow to mass flow. Moreover, by decomposing the mass flux (linear momentum field) at the orifice into two main factors, macroscopic velocity and density fields, we obtain that the nonmonotonic behavior of the linear momentum is caused by density changes rather than by changes in the macroscopic velocity. In addition, by analyzing the spatial distribution of the kinetic stress, we find that for small orifices increasing rotational shear enhances the mean kinetic pressure (pk) and the system dilatancy. This reduces the stability of the arches, and, consequently, the volumetric flow rate increases monotonically. For large orifices, however, we detected that (pk) changes nonmonotonically, which might explain the nonmonotonic behavior of Q when varying the rotational shear

    Movimiento de un intruso dentro de un medio granular denso: una propuesta didáctica para Bachillerato Internacional

    Get PDF
    Este proyecto consiste en el análisis de la dinámica de un proyectil en un medio granular denso para su puesta en práctica en un contexto de Bachillerato Internacional (BI). El punto de partida del proyecto son unos datos que se obtienen mediante simulación software facilitados por el Departamento de Física y Matemática Aplicada de la Universidad de Navarra y que otorgan información sobre el movimiento de un cuerpo esférico en un medio granular denso a lo largo de la dirección de la gravedad. En este Trabajo Final de Máster se analizan estos datos para el caso de gravedad cero y se lleva a cabo un estudio crítico apoyándonos en la ecuación de movimiento que define la dinámica del proyectil en el medio dado. También se desarrolla el código que mejor defina el comportamiento de un proyectil a lo largo del medio granular, el cual se valida con los datos proporcionados. Al mismo tiempo, se va a desarrollar una propuesta didáctica a través del Proyecto del Grupo 4 enfocándonos exclusivamente en la disciplina de la Física, en donde el alumnado es capaz de analizar esos datos haciendo uso del código para llegar a unas conclusiones pertinentes. Este tipo de proyectos es idóneo para que los alumnos tomen conciencia de la forma en que los científicos profesionales trabajan y se comunican entre ellos a nivel internacional.This project consists of the analysis of the dynamics of a projectile in a dense granular medium for its implementation in an International Baccalaureate (IB) context. The starting point of the project is data obtained through software simulation, which gives information about the movement of a spherical body in a dense granular medium along the direction of gravity. It is provided by the Department of Physics and Applied Mathematics of the University of Navarra. In this master’s thesis, these data are analysed for the case of zero gravity and a critical study is conducted, which is based on the equation of motion that defines the dynamics of the projectile in the given medium. We develop the code that best defines the behaviour of a projectile along the granular medium, which is validated by the data provided. In parallel with that, a didactic proposal is developed through the Group 4 Project focusing exclusively on the discipline of Physics, where students can analyse these data using the code to reach pertinent conclusions. This type of project is ideal for students to become aware of the way in which professional scientists work and communicate with each other on an international level

    Active particles with desired orientation fowing through a bottleneck

    Get PDF
    We report extensive numerical simulations of the flow of anisotropic self-propelled particles through a constriction. In particular, we explore the role of the particles' desired orientation with respect to the moving direction on the system flowability. We observe that when particles propel along the direction of their long axis (longitudinal orientation) the flow-rate notably reduces compared with the case of propulsion along the short axis (transversal orientation). And this is so even when the effective section (measured as the number of particles that are necessary to span the whole outlet) is larger for the case of longitudinal propulsion. This counterintuitive result is explained in terms of the formation of clogging structures at the outlet, which are revealed to have higher stability when the particles align along the long axis. This generic result might be applied to many different systems flowing through bottlenecks such as microbial populations or different kind of cells. Indeed, it has already a straightforward connection with recent results of pedestrian (which self-propel transversally oriented) and mice or sheep (which self-propel longitudinally oriented)

    Simulating competitive egress of noncircular pedestrians

    Get PDF
    We present a numerical framework to simulate pedestrian dynamics in highly competitive conditions by means of a force-based model implemented with spherocylindrical particles instead of the traditional, symmetric disks. This modification of the individuals' shape allows one to naturally reproduce recent experimental findings of room evacuations through narrow doors in situations where the contact pressure among the pedestrians was rather large. In particular, we obtain a power-law tail distribution of the time lapses between the passage of consecutive individuals. In addition, we show that this improvement leads to new features where the particles' rotation acquires great significance

    The role of initial speed in projectile impacts into light granular media

    Get PDF
    Projectile impact into a light granular material composed of expanded polypropylene (EPP) particles is investigated systematically with various impact velocities. Experimentally, the trajectory of an intruder moving inside the granular material is monitored with a recently developed non-invasive microwave radar system. Numerically, discrete element simulations together with coarse-graining techniques are employed to address both dynamics of the intruder and response of the granular bed. Our experimental and numerical results of the intruder dynamics agree with each other quantitatively and are in congruent with existing phenomenological model on granular drag. Stepping further, we explore the 'microscopic' origin of granular drag through characterizing the response of granular bed, including density, velocity and kinetic stress fields at the mean-field level. In addition, we find that the dynamics of cavity collapse behind the intruder changes significantly when increasing the initial speed . Moreover, the kinetic pressure ahead of the intruder decays exponentially in the co-moving system of the intruder. Its scaling gives rise to a characteristic length scale, which is in the order of intruder size. This finding is in perfect agreement with the long-scale inertial dissipation type that we find in all cases

    Motion of a sphere in a viscous fluid towards a wall confined versus unconfined conditions

    Get PDF
    In the present work, we investigate experimentally and numerically the motion of solid macroscopic spheres (Brownian and colloidal effects are negligible) when settling from rest in a quiescent fluid toward a solid wall under confined and unconfined configurations. Particle trajectories for spheres of two types of materials are measured using a high-speed digital camera. For unconfined configurations, our experimental findings are in excellent agreement with well-established analytical frameworks, used to describe the forces acting on the sphere. Besides, the experimental values of the terminal velocity obtained for different confinements are also in very good agreement with previous theoretical formulations. Similar conditions are simulated using a resolved CFD-DEM approach. After adjusting the parameters of the numerical model, we analyze the particle dynamic under several confinement conditions. The simulations results are contrasted with the experimental findings, obtaining a good agreement. We analyze several systems varying the radius of the bead and show the excellent agreement of our results with previous analytical approaches. However, the results indicate that confined particles have a distinct dynamics response when approaching the wall. Consequently, their motion cannot be described by the analytical framework introduced for the infinite system. Indeed, the confinement strongly affects the spatial scale where the particle is affected by the bottom wall and, accordingly, the dimensionless results can not be collapsed in a single master curve, using the particle size as a characteristic length. Alternatively, we rationalize our findings using a kinematic approximation to highlight the relevant scale of the problem. Our outcomes suggest it is possible to determine a new spatial scale to describe the collisional process, depending on the specific confining conditions

    The role of the particle aspect ratio in the discharge of a narrow silo

    Get PDF
    The time evolution of silo discharge is investigated for different granular materials made of spherical or elongated grains in laboratory experiments and with discrete element model (DEM) calculations. For spherical grains, we confirm the widely known typical behavior with constant discharge rate (except for initial and final transients). For elongated particles with aspect ratios between 2 < L/d < 6.1, we find a peculiar flow rate increase for larger orifices before the end of the discharge process. While the flow field is practically homogeneous for spherical grains, it has strong gradients for elongated particles with a fast-flowing region in the middle of the silo surrounded by a stagnant zone. For large enough orifice sizes, the flow rate increase is connected with a suppression of the stagnant zone, resulting in an increase in both the packing fraction and flow velocity near the silo outlet within a certain parameter range

    The role of the particle aspect ratio in the discharge of a narrow silo

    Get PDF
    The time evolution of silo discharge is investigated for different granular materials made of spherical or elongated grains in laboratory experiments and with discrete element model (DEM) calculations. For spherical grains, we confirm the widely known typical behavior with constant discharge rate (except for initial and final transients). For elongated particles with aspect ratios between 2 < L/d < 6.1, we find a peculiar flow rate increase for larger orifices before the end of the discharge process. While the flow field is practically homogeneous for spherical grains, it has strong gradients for elongated particles with a fast-flowing region in the middle of the silo surrounded by a stagnant zone. For large enough orifice sizes, the flow rate increase is connected with a suppression of the stagnant zone, resulting in an increase in both the packing fraction and flow velocity near the silo outlet within a certain parameter range
    corecore