35,863 research outputs found

    On the normalization of Killing vectors and energy conservation in two-dimensional gravity

    Get PDF
    We explicitly show that, in the context of a recently proposed 2D dilaton gravity theory, energy conservation requires the ``natural'' Killing vector to have, asymptotically, an unusual normalization. The Hawking temperature THT_H is then calculated according to this prescription.Comment: 7 pages, Latex, no figure

    Multilingual Information Framework for Handling textual data in Digital Media

    Get PDF
    This document presents MLIF (Multi Lingual Information Framework), a high-level model for describing multilingual data across a wide range of possible applications in the translation/localization process within several multimedia domains (e.g. broadcasting interactive programs within a multilingual community)

    Critical energy flux and mass in solvable theories of 2d dilaton gravity

    Get PDF
    In this paper we address the issue of determining the semiclassical threshold for black hole formation in the context of a one-parameter family of theories which continuously interpolates between the RST and BPP models. We find that the results depend significantly on the initial static configuration of the spacetime geometry before the influx of matter is turned on. In some cases there is a critical energy density, given by the Hawking rate of evaporation, as well as a critical mass mcrm_{cr} (eventually vanishing). In others there is neither mcrm_{cr} nor a critical flux.Comment: LaTeX file, 12 pages, 4 figure

    STiC -- A multi-atom non-LTE PRD inversion code for full-Stokes solar observations

    Full text link
    The inference of the underlying state of the plasma in the solar chromosphere remains extremely challenging because of the nonlocal character of the observed radiation and plasma conditions in this layer. Inversion methods allow us to derive a model atmosphere that can reproduce the observed spectra by undertaking several physical assumptions. The most advanced approaches involve a depth-stratified model atmosphere described by temperature, line-of-sight velocity, turbulent velocity, the three components of the magnetic field vector, and gas and electron pressure. The parameters of the radiative transfer equation are computed from a solid ground of physical principles. To apply these techniques to spectral lines that sample the chromosphere, NLTE effects must be included in the calculations. We developed a new inversion code STiC to study spectral lines that sample the upper chromosphere. The code is based the RH synthetis code, which we modified to make the inversions faster and more stable. For the first time, STiC facilitates the processing of lines from multiple atoms in non-LTE, also including partial redistribution effects. Furthermore, we include a regularization strategy that allows for model atmospheres with a complex stratification, without introducing artifacts in the reconstructed physical parameters, which are usually manifested in the form of oscillatory behavior. This approach takes steps toward a node-less inversion, in which the value of the physical parameters at each grid point can be considered a free parameter. In this paper we discuss the implementation of the aforementioned techniques, the description of the model atmosphere, and the optimizations that we applied to the code. We carry out some numerical experiments to show the performance of the code and the regularization techniques that we implemented. We made STiC publicly available to the community.Comment: Accepted for publication in Astronomy & Astrophysic

    The 6C** Sample and the Highest Redshift Radio Galaxies

    Full text link
    We present a new radio sample, 6C** designed to find radio galaxies at z > 4 and discuss some of its near-infrared imaging follow-up results.Comment: 2 pages, 2 figures, to appear in proceedings of 'Multi-wavelength AGN surveys', Cozumel, 200

    Graviton resonances on two-field thick branes

    Get PDF
    This work presents new results about the graviton massive spectrum in two-field thick branes. Analyzing the massive spectra with a relative probability method we have firstly showed the presence of resonance structures and obtained a connection between the thickness of the defect and the lifetimes of such resonances. We obtain another interesting results considering the degenerate Bloch brane solutions. In these thick brane models, we have the emergence of a splitting effect controlled by a degeneracy parameter. When the degeneracy constant tends to a critical value, we have found massive resonances to the gravitational field indicating the existence of modes highly coupled to the brane. We also discussed the influence of the brane splitting effect over the resonance lifetimes.Comment: 15 pages, 8 figure
    • …
    corecore