1,276 research outputs found

    Static circularly symmetric perfect fluid solutions with an exterior BTZ metric

    Full text link
    In this work we study static perfect fluid stars in 2+1 dimensions with an exterior BTZ spacetime. We found the general expression for the metric coefficients as a function of the density and pressure of the fluid. We found the conditions to have regularity at the origin throughout the analysis of a set of linearly independent invariants. We also obtain an exact solution of the Einstein equations, with the corresponding equation of state p=p(ρ)p=p(\rho), which is regular at the origin.Comment: 10 pages, 1 figure, revtex 4. This paper is in honor of Alberto Garcia's sixtieth birthday. Accepted by Gen. Rel. Gra

    Dependence of Variational Perturbation Expansions on Strong-Coupling Behavior. Inapplicability of delta-Expansion to Field Theory

    Get PDF
    We show that in applications of variational theory to quantum field theory it is essential to account for the correct Wegner exponent omega governing the approach to the strong-coupling, or scaling limit. Otherwise the procedure either does not converge at all or to the wrong limit. This invalidates all papers applying the so-called delta-expansion to quantum field theory.Comment: Author Information under http://www.physik.fu-berlin.de/~kleinert/institution.html . Latest update of paper (including all PS fonts) at http://www.physik.fu-berlin.de/~kleinert/34

    Curvature of the universe and the dark energy potential

    Get PDF
    The flatness of an accelerating universe model (characterized by a dark energy scalar field χ\chi) is mimicked from a curved model that is filled with, apart from the cold dark matter component, a quintessencelike scalar field QQ. In this process, we characterize the original scalar potential V(Q)V(Q) and the mimicked scalar potential V(χ)V(\chi) associated to the scalar fields QQ and χ\chi, respectively. The parameters of the original model are fixed through the mimicked quantities that we relate to the present astronomical data, such that the equation state parameter wχw_{_{\chi}} and the dark energy density parameter Ωχ\Omega_{\chi}.Comment: References 7 and 8 have been corrected: (7) Riess et al. 1998, AJ, 116, 1009 and (8) Perlmutter et al. 1999, ApJ, 517, 56

    Neutral minima in two-Higgs doublet models

    Get PDF
    We study the neutral minima of two-Higgs doublet models, showing that these potentials can have at least two such minima with different depths. We analyse the phenomenology of these minima for the several types of two-Higgs doublet potentials, where CP is explicitly broken, spontaneously broken or preserved. We discover that it is possible to have a neutral minimum in these potentials where the masses of the known particles have their standard values, with another deeper minimum where those same particles acquire different masses.Comment: 20 pages, 3 figure

    Asas health index for patients with spondyloarthritis: translation into portuguese, validation, and reliability

    Get PDF
    Trabalho apresentado no Annual European Congress of Rheumatology (EULAR 2017), 14-17 junho de 2017, Madrid, EspanhaN/

    Integrating clinical research in an operative screening and diagnostic breast imaging department: First experience, results and perspectives using microwave imaging.

    Get PDF
    Clinical research is crucial for evaluating new medical procedures and devices. It is important for healthcare units and hospitals to minimize the disruptions caused by conducting clinical studies; however, complex clinical pathways require dedicated recruitment and study designs.This work presents the effective introduction of novel microwave breast imaging (MBI), via MammoWave apparatus, into the clinical routine of an operative screening and diagnostic breast imaging department for conducting a multicentric clinical study. Microwave breast imaging, using MammoWave apparatus, was performed on volunteers coming from different clinical pathways. Clinical data, comprising demographics and conventional radiologic reports (used as reference standard), was collected; a satisfaction questionnaire was filled by every volunteer. Microwave images were analyzed by an automatic clinical decision support system, which quantified their corresponding features to discriminate between breasts with no relevant radiological findings (NF) and breasts with described findings (WF). Conventional breast imaging (DBT, US, MRI) and MBI were performed and adapted to assure best clinical practices and optimum pathways. 180 volunteers, both symptomatic and asymptomatic, were enrolled in the study. After microwave images' quality assessment, 48 NF (15 dense) and 169 WF (88 dense) breasts were used for the prospective study; 48 (18 dense) breasts suffered from a histology-confirmed carcinoma. An overall sensitivity of 85.8 % in breasts lesions' detection was achieved by the microwave imaging apparatus. An optimum recruitment strategy was implemented to assess MBI. Future trials may show the clinical usefulness of microwave imaging, which may play an important role in breast screening. [Abstract copyright: © 2023 The Authors.

    An accelerated closed universe

    Full text link
    We study a model in which a closed universe with dust and quintessence matter components may look like an accelerated flat Friedmann-Robertson-Walker (FRW) universe at low redshifts. Several quantities relevant to the model are expressed in terms of observed density parameters, ΩM\Omega_M and ΩΛ\Omega_{\Lambda}, and of the associated density parameter ΩQ\Omega_Q related to the quintessence scalar field QQ.Comment: 11 pages. For a festschrift honoring Alberto Garcia. To appear in Gen. Rel. Gra

    Higher Order Evaluation of the Critical Temperature for Interacting Homogeneous Dilute Bose Gases

    Get PDF
    We use the nonperturbative linear \delta expansion method to evaluate analytically the coefficients c_1 and c_2^{\prime \prime} which appear in the expansion for the transition temperature for a dilute, homogeneous, three dimensional Bose gas given by T_c= T_0 \{1 + c_1 a n^{1/3} + [ c_2^{\prime} \ln(a n^{1/3}) +c_2^{\prime \prime} ] a^2 n^{2/3} + {\cal O} (a^3 n)\}, where T_0 is the result for an ideal gas, a is the s-wave scattering length and n is the number density. In a previous work the same method has been used to evaluate c_1 to order-\delta^2 with the result c_1= 3.06. Here, we push the calculation to the next two orders obtaining c_1=2.45 at order-\delta^3 and c_1=1.48 at order-\delta^4. Analysing the topology of the graphs involved we discuss how our results relate to other nonperturbative analytical methods such as the self-consistent resummation and the 1/N approximations. At the same orders we obtain c_2^{\prime\prime}=101.4, c_2^{\prime \prime}=98.2 and c_2^{\prime \prime}=82.9. Our analytical results seem to support the recent Monte Carlo estimates c_1=1.32 \pm 0.02 and c_2^{\prime \prime}= 75.7 \pm 0.4.Comment: 29 pages, 3 eps figures. Minor changes, one reference added. Version in press Physical Review A (2002

    Asymptotically Improved Convergence of Optimized Perturbation Theory in the Bose-Einstein Condensation Problem

    Full text link
    We investigate the convergence properties of optimized perturbation theory, or linear δ\delta expansion (LDE), within the context of finite temperature phase transitions. Our results prove the reliability of these methods, recently employed in the determination of the critical temperature T_c for a system of weakly interacting homogeneous dilute Bose gas. We carry out the explicit LDE optimized calculations and also the infrared analysis of the relevant quantities involved in the determination of TcT_c in the large-N limit, when the relevant effective static action describing the system is extended to O(N) symmetry. Then, using an efficient resummation method, we show how the LDE can exactly reproduce the known large-N result for TcT_c already at the first non-trivial order. Next, we consider the finite N=2 case where, using similar resummation techniques, we improve the analytical results for the nonperturbative terms involved in the expression for the critical temperature allowing comparison with recent Monte Carlo estimates of them. To illustrate the method we have considered a simple geometric series showing how the procedure as a whole works consistently in a general case.Comment: 38 pages, 3 eps figures, Revtex4. Final version in press Phys. Rev.

    On the Convergence of the Linear Delta Expansion for the Shift in T_c for Bose-Einstein Condensation

    Full text link
    The leading correction from interactions to the transition temperature T_c for Bose-Einstein condensation can be obtained from a nonperturbative calculation in the critical O(N) scalar field theory in 3 dimensions with N=2. We show that the linear delta expansion can be applied to this problem in such a way that in the large-N limit it converges to the exact analytic result. If the principal of minimal sensitivity is used to optimize the convergence rate, the errors seem to decrease exponentially with the order in the delta expansion. For N=2, we calculate the shift in T_c to fourth order in delta. The results are consistent with slow convergence to the results of recent lattice Monte Carlo calculations.Comment: 26 pages, latex, 8 figure
    corecore