74 research outputs found

    A 1.8 million year history of Amazon vegetation

    Get PDF
    During the Pleistocene, long-term trends in global climate were controlled by orbital cycles leading to high amplitude glacial-interglacial variability. The history of Amazonian vegetation during this period is largely unknown since no continuous record from the lowland basin extends significantly beyond the last glacial stage. Here we present a paleoenvironmental record spanning the last 1800 kyr based on palynological data, biome reconstructions, and biodiversity metrics from a marine sediment core that preserves a continuous archive of sediments from the Amazon River. Tropical rainforests dominated the Amazonian lowlands during the last 1800 ka interchanging with surrounding warm-temperate rainforests and tropical seasonal forests. Between 1800 and 1000 ka, rainforest biomes were present in the Amazon drainage basin, along with extensive riparian wetland vegetation. Tropical rainforest expansion occurred during the relatively warm Marine Isotope Stages 33 and 31 (ca. 1110 to 1060 ka), followed by a contraction of both forests and wetlands until ca. 800 ka. Between 800 and 400 ka, low pollen concentration and low diversity of palynological assemblages renders difficult the interpretation of Amazonian vegetation. A strong synchronicity between vegetation changes and glacial-interglacial global climate cycles was established around 400 ka. After 400 ka, interglacial vegetation was dominated by lowland tropical rainforest in association with warmer temperatures and higher CO2. During cooler temperatures and lower CO2 of glacial stages, tropical seasonal forests expanded, presumably towards eastern Amazonia. While this study provides no evidence supporting a significant expansion of savanna or steppe vegetation within the Amazonian lowlands during glacial periods, there were changes in the rainforest composition in some parts of the basin towards a higher proportion of deciduous elements, pointing to less humid conditions and/or greater seasonality of precipitation. Nevertheless, rainforest persisted during both glacial and interglacial periods. These findings confirm the sensitivity of tropical lowland vegetation to changes in CO2, temperature, and moisture availability and the most suitable conditions for tropical rainforests occurred during the warmest stages of the Mid Pleistocene Transition and during the interglacial stages of the past 400 kyr

    Linking rattiness, geography and environmental degradation to spillover Leptospira infections in marginalised urban settings: An eco-epidemiological community-based cohort study in Brazil

    Get PDF
    Background: Zoonotic spillover from animal reservoirs is responsible for a significant global public health burden, but the processes that promote spillover events are poorly understood in complex urban settings. Endemic transmission of Leptospira, the agent of leptospirosis, in marginalised urban communities occurs through human exposure to an environment contaminated by bacteria shed in the urine of the rat reservoir. However, it is unclear to what extent transmission is driven by variation in the distribution of rats or by the dispersal of bacteria in rainwater runoff and overflow from open sewer systems. Methods: We conducted an eco-epidemiological study in a high-risk community in Salvador, Brazil, by prospectively following a cohort of 1401 residents to ascertain serological evidence for leptospiral infections. A concurrent rat ecology study was used to collect information on the fine-scale spatial distribution of 'rattiness', our proxy for rat abundance and exposure of interest. We developed and applied a novel geostatistical framework for joint spatial modelling of multiple indices of disease reservoir abundance and human infection risk. Results: The estimated infection rate was 51.4 (95%CI 40.4, 64.2) infections per 1000 follow-up events. Infection risk increased with age until 30 years of age and was associated with male gender. Rattiness was positively associated with infection risk for residents across the entire study area, but this effect was stronger in higher elevation areas (OR 3.27 95% CI 1.68, 19.07) than in lower elevation areas (OR 1.14 95% CI 1.05, 1.53). Conclusions: These findings suggest that, while frequent flooding events may disperse bacteria in regions of low elevation, environmental risk in higher elevation areas is more localised and directly driven by the distribution of local rat populations. The modelling framework developed may have broad applications in delineating complex animal-environment-human interactions during zoonotic spillover and identifying opportunities for public health intervention

    Genomic Surveillance of Yellow Fever Virus Epizootic in São Paulo, Brazil, 2016 – 2018

    Get PDF
    São Paulo, a densely inhabited state in southeast Brazil that contains the fourth most populated city in the world, recently experienced its largest yellow fever virus (YFV) outbreak in decades. YFV does not normally circulate extensively in São Paulo, so most people were unvaccinated when the outbreak began. Surveillance in non-human primates (NHPs) is important for determining the magnitude and geographic extent of an epizootic, thereby helping to evaluate the risk of YFV spillover to humans. Data from infected NHPs can give more accurate insights into YFV spread than when using data from human cases alone. To contextualise human cases, identify epizootic foci and uncover the rate and direction of YFV spread in São Paulo, we generated and analysed virus genomic data and epizootic case data from NHPs in São Paulo. We report the occurrence of three spatiotemporally distinct phases of the outbreak in São Paulo prior to February 2018. We generated 51 new virus genomes from YFV positive cases identified in 23 different municipalities in São Paulo, mostly sampled from NHPs between October 2016 and January 2018. Although we observe substantial heterogeneity in lineage dispersal velocities between phylogenetic branches, continuous phylogeographic analyses of generated YFV genomes suggest that YFV lineages spread in São Paulo at a mean rate of approximately 1km per day during all phases of the outbreak. Viral lineages from the first epizootic phase in northern São Paulo subsequently dispersed towards the south of the state to cause the second and third epizootic phases there. This alters our understanding of how YFV was introduced into the densely populated south of São Paulo state. Our results shed light on the sylvatic transmission of YFV in highly fragmented forested regions in São Paulo state and highlight the importance of continued surveillance of zoonotic pathogens in sentinel species

    Phytotoxicity of Soil Contaminated with Petroleum Derivatives and Biodiesel

    Get PDF
    The inhibition of root and hypocotyl elongation may reflect toxic substances in low concentrations, which are not sufficient to prevent germination, but may delay or inhibit root and hypocotyl growth. The objective of this study was to evaluate root and hypocotyl growth inhibition in Cucumis sativus, Brassica oleracea and Barbarea verna as a parameter for assessing soils toxicity when contaminated with diesel, lubricant oil and biodiesel. Thus, potential toxicity of contaminants was evaluated according to biodegradation time in soil by examining root and hypocotyl elongation inhibition. Results show that C. sativus root is the best indicator for diesel and lubricant oil reduced toxicity after biodegradation. It was also observed that biodiesel increases its toxicity after two months of biodegradation

    A novel substrate for arrhythmias in Chagas disease.

    No full text
    BackgroundChagas disease (CD) is a neglected disease that induces heart failure and arrhythmias in approximately 30% of patients during the chronic phase of the disease. Despite major efforts to understand the cellular pathophysiology of CD there are still relevant open questions to be addressed. In the present investigation we aimed to evaluate the contribution of the Na+/Ca2+ exchanger (NCX) in the electrical remodeling of isolated cardiomyocytes from an experimental murine model of chronic CD.Methodology/principal findingsMale C57BL/6 mice were infected with Colombian strain of Trypanosoma cruzi. Experiments were conducted in isolated left ventricular cardiomyocytes from mice 180-200 days post-infection and with age-matched controls. Whole-cell patch-clamp technique was used to measure cellular excitability and Real-time PCR for parasite detection. In current-clamp experiments, we found that action potential (AP) repolarization was prolonged in cardiomyocytes from chagasic mice paced at 0.2 and 1 Hz. After-depolarizations, both subthreshold and with spontaneous APs events, were more evident in the chronic phase of experimental CD. In voltage-clamp experiments, pause-induced spontaneous activity with the presence of diastolic transient inward current was enhanced in chagasic cardiomyocytes. AP waveform disturbances and diastolic transient inward current were largely attenuated in chagasic cardiomyocytes exposed to Ni2+ or SEA0400.Conclusions/significanceThe present study is the first to describe NCX as a cellular arrhythmogenic substrate in chagasic cardiomyocytes. Our data suggest that NCX could be relevant to further understanding of arrhythmogenesis in the chronic phase of experimental CD and blocking NCX may be a new therapeutic strategy to treat arrhythmias in this condition

    Thermal Treatment and High-Intensity Ultrasound Processing to Evaluate the Chemical Profile and Antioxidant Activity of Amazon Fig Juices

    No full text
    The present paper evaluated the influence of heat treatment (HT) and high-intensity ultrasound (HIUS) on the chemical profile of the Amazon fig (Ficus subapiculata, Moraceae) juices. Antioxidant activity, quantification of carotenoids, total phenolic compounds (TPC), pH, titratable acidity, soluble solids, color and chemical profile (NMR) were evaluated. Treatments did not change the pH (3.4–3.5), titratable acidity (0.044–0.048%) and soluble solids (2.3–2.4 °Brix). The highest antioxidant activity (DPPH, ABTS) and TPC were presented by the HT-treated juice, which was equivalent to 1235 ± 11 µM TE, 1440 ± 13 µM TE and 312 ± 5 mg GAE mL−1, respectively. The treatments influenced the color luminosity according to the L* and a* parameters, while the b* parameter showed no significant change. The L* parameter was elevated in all treated samples compared to the control sample. Analyzing the parameter a* f, it was verified that the sample with thermal treatment (HT) was different from the control sample, but presented similarity with the samples of the HIUS processes. The 1H NMR spectra of the juices showed similar chemical profiles in all treatments. The compounds α-glucose, β-glucose, fructose, citric, malic, quinic, and p-hydroxybenzoic acids were identified. The HT treatment presented higher efficiency to extract the antioxidant compounds from fig juices. The HIUS treatments with constant energy density also improved the tolerance of the antioxidant compounds, especially in conditions of higher potency and reduced time. Future studies will be devoted to carry out microbiological analysis and evaluate the stability of treated juices
    corecore