71 research outputs found

    Evaluation of Styrene Content over Physical and Chemical Properties of Elastomer/TPS-EVOH/Chicken Feather Composites

    Get PDF
    A series of styrene-butadiene (SB) elastomer/thermoplastic starch (TPS)/ethylene vinyl alcohol copolymer (EVOH) composites were modified including chicken feathers in its formulation, which have the main component keratin. The composites were prepared by means of melt blending, and their chemical interactions were evaluated by means of infrared spectroscopy (FTIR), and their thermal properties as Tg values were investigated using differential scanning calorimetry (DSC), thermal stability using thermogravimetric analysis (TGA), and viscoelastic properties with dynamic mechanical analysis (DMA). The styrene content in SB was changed in 3 levels, and chicken feather content also changed in 3 levels. It was identified that Tg value in composites decreases that is attributed to the styrene content in elastomer and that the chicken feather improved the storage modulus of composite. The thermal stability of composites also was affected by the presence of chicken feathers due its good thermal properties

    Evaluation of Addition of Reactive Resin for an Adhesive Formulation of Pressure-Sensitive Adhesive

    Get PDF
    Nowadays, adhesive industry is growing, and its development will be important in a short future because it offers good returns, and in some cases it is a better option for packaging and sealing with advantages in prices, productivity and weight reduction. In terms of joining and/or sealing, adhesives are well positioned among joining systems; however, knowledge about adhesives is need for their efficient use and only through proper design of the union can be achieved satisfactory results. In this chapter, a development of a formulation of pressure-sensitive adhesive based on styrene-butadiene copolymers using a reactive resin is reported. Non-aromatic solvents were used in adhesive formulation with the aim of avoiding the emission of harmful solvents into the Atmosphere, and the adequate combination and amount of solvents were found. The effect of addition of a phenolic resin in the adhesive formulation as a crosslinking agent was evaluated. By means Fourier Transform Infrared spectroscopy (FTIR), the crosslinking reaction was also studied. The performance of adhesive formulation was evaluated by means of dynamic mechanical analysis (DMA)

    Asociación entre Artritis Reumatoidea y otras enfermedades autoinmunes

    Get PDF
    Objetivos: determinar la frecuencia de enfermedades autoinmunes (EAI) en pacientes con Artritis Reumatoidea (AR) y comparar la frecuencia de EAI entre pacientes con AR y sin AR ni otra EAI reumatológica. Material y Métodos: estudio multicéntrico, observacional, analítico, retrospectivo. Se incluyeron pacientes consecutivos con AR (ACR/EULAR 2010) y como grupo control pacientes con diagnóstico inicial de Osteoartritis primaria (OA).

    Clonal chromosomal mosaicism and loss of chromosome Y in elderly men increase vulnerability for SARS-CoV-2

    Full text link
    The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, COVID-19) had an estimated overall case fatality ratio of 1.38% (pre-vaccination), being 53% higher in males and increasing exponentially with age. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, we found 133 cases (1.42%) with detectable clonal mosaicism for chromosome alterations (mCA) and 226 males (5.08%) with acquired loss of chromosome Y (LOY). Individuals with clonal mosaic events (mCA and/or LOY) showed a 54% increase in the risk of COVID-19 lethality. LOY is associated with transcriptomic biomarkers of immune dysfunction, pro-coagulation activity and cardiovascular risk. Interferon-induced genes involved in the initial immune response to SARS-CoV-2 are also down-regulated in LOY. Thus, mCA and LOY underlie at least part of the sex-biased severity and mortality of COVID-19 in aging patients. Given its potential therapeutic and prognostic relevance, evaluation of clonal mosaicism should be implemented as biomarker of COVID-19 severity in elderly people. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, individuals with clonal mosaic events (clonal mosaicism for chromosome alterations and/or loss of chromosome Y) showed an increased risk of COVID-19 lethality

    Combined fit to the spectrum and composition data measured by the Pierre Auger Observatory including magnetic horizon effects

    Get PDF
    The measurements by the Pierre Auger Observatory of the energy spectrum and mass composition of cosmic rays can be interpreted assuming the presence of two extragalactic source populations, one dominating the flux at energies above a few EeV and the other below. To fit the data ignoring magnetic field effects, the high-energy population needs to accelerate a mixture of nuclei with very hard spectra, at odds with the approximate E2^{-2} shape expected from diffusive shock acceleration. The presence of turbulent extragalactic magnetic fields in the region between the closest sources and the Earth can significantly modify the observed CR spectrum with respect to that emitted by the sources, reducing the flux of low-rigidity particles that reach the Earth. We here take into account this magnetic horizon effect in the combined fit of the spectrum and shower depth distributions, exploring the possibility that a spectrum for the high-energy population sources with a shape closer to E2^{-2} be able to explain the observations

    Studies of the mass composition of cosmic rays and proton-proton interaction cross-sections at ultra-high energies with the Pierre Auger Observatory

    Get PDF
    In this work, we present an estimate of the cosmic-ray mass composition from the distributions of the depth of the shower maximum (Xmax) measured by the fluorescence detector of the Pierre Auger Observatory. We discuss the sensitivity of the mass composition measurements to the uncertainties in the properties of the hadronic interactions, particularly in the predictions of the particle interaction cross-sections. For this purpose, we adjust the fractions of cosmic-ray mass groups to fit the data with Xmax distributions from air shower simulations. We modify the proton-proton cross-sections at ultra-high energies, and the corresponding air shower simulations with rescaled nucleus-air cross-sections are obtained via Glauber theory. We compare the energy-dependent composition of ultra-high-energy cosmic rays obtained for the different extrapolations of the proton-proton cross-sections from low-energy accelerator data

    Study of downward Terrestrial Gamma-ray Flashes with the surface detector of the Pierre Auger Observatory

    Get PDF
    The surface detector (SD) of the Pierre Auger Observatory, consisting of 1660 water-Cherenkov detectors (WCDs), covers 3000 km2 in the Argentinian pampa. Thanks to the high efficiency of WCDs in detecting gamma rays, it represents a unique instrument for studying downward Terrestrial Gamma-ray Flashes (TGFs) over a large area. Peculiar events, likely related to downward TGFs, were detected at the Auger Observatory. Their experimental signature and time evolution are very different from those of a shower produced by an ultrahigh-energy cosmic ray. They happen in coincidence with low thunderclouds and lightning, and their large deposited energy at the ground is compatible with that of a standard downward TGF with the source a few kilometers above the ground. A new trigger algorithm to increase the TGF-like event statistics was installed in the whole array. The study of the performance of the new trigger system during the lightning season is ongoing and will provide a handle to develop improved algorithms to implement in the Auger upgraded electronic boards. The available data sample, even if small, can give important clues about the TGF production models, in particular, the shape of WCD signals. Moreover, the SD allows us to observe more than one point in the TGF beam, providing information on the emission angle

    Measuring the muon content of inclined air showers using AERA and the water-Cherenkov detector array of the Pierre Auger Observatory

    Get PDF

    The dynamic range of the upgraded surface-detector stations of AugerPrime

    Get PDF
    The detection of ultra-high-energy cosmic rays by means of giant detector arrays is often limited by the saturation of the recorded signals near the impact point of the shower core at the ground, where the particle density dramatically increases. The saturation affects in particular the highest energy events, worsening the systematic uncertainties in the reconstruction of the shower characteristics. The upgrade of the Pierre Auger Observatory, called AugerPrime, includes the installation of an 1-inch Small PhotoMultiplier Tube (SPMT) inside each water-Cherenkov station (WCD) of the surface detector array. The SPMT allows an unambiguous measurement of signals down to about 250m from the shower core, thus reducing the number of events featuring a saturated station to a negligible level. In addition, a 3.8m2 plastic scintillator (Scintillator Surface Detector, SSD) is installed on top of each WCD. The SSD is designed to match the WCD (with SPMT) dynamic range, providing a complementary measurement of the shower components up to the highest energies. In this work, the design and performances of the upgraded AugerPrime surface-detector stations in the extended dynamic range are described, highlighting the accuracy of the measurements. A first analysis employing the unsaturated signals in the event reconstruction is also presented
    corecore