130 research outputs found

    Protective effect of epigallocatechin-3-gallate (EGCG) in diseases with uncontrolled immune activation: Could such a scenario be helpful to counteract COVID-19?

    Get PDF
    Some coronavirus disease 2019 (COVID-19) patients develop acute pneumonia which can result in a cytokine storm syndrome in response to Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) infection. The most effective anti-inflammatory drugs employed so far in severe COVID-19 belong to the cytokine-directed biological agents, widely used in the management of many autoimmune diseases. In this paper we analyze the efficacy of epigallocatechin 3-gallate (EGCG), the most abundant ingredient in green tea leaves and a well-known antioxidant, in counteracting autoimmune diseases, which are dominated by a massive cytokines production. Indeed, many studies registered that EGCG inhibits signal transducer and activator of transcription (STAT)1/3 and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-\u3baB) transcription factors, whose activities are crucial in a multiplicity of downstream pro-inflammatory signaling pathways. Importantly, the safety of EGCG/green tea extract supplementation is well documented in many clinical trials, as discussed in this review. Since EGCG can restore the natural immunological homeostasis in many different autoimmune diseases, we propose here a supplementation therapy with EGCG in COVID-19 patients. Besides some antiviral and anti-sepsis actions, the major EGCG benefits lie in its anti-fibrotic effect and in the ability to simultaneously downregulate expression and signaling of many inflammatory mediators. In conclusion, EGCG can be considered a potential safe natural supplement to counteract hyper-inflammation growing in COVID-19

    The Effects of 1-Hz rTMS on Emotional Behavior and Dendritic Complexity of Mature and Newly Generated Dentate Gyrus Neurons in Male Mice

    Get PDF
    Low-frequency repetitive transcranial magnetic stimulation (1-Hz rTMS) is a promising noninvasive tool for the treatment of depression. Hippocampal neuronal plasticity is thought to play a pivotal role in the pathophysiology of depressive disorders and the mechanism of action of antidepressant treatments. We investigated the effect of 1-Hz rTMS treatment on hippocampal dentate gyrus structural plasticity and related emotional behaviors modifications. Experimentally, adult male mice received either five days of 1-Hz rTMS or Sham stimulation. After stimulation, the mice underwent a battery of tests for anxiety-like and depression-like behaviors. We also tested the effect of treatment on mature and newly generated granule cell dendritic complexity. Our data showed that 1-Hz rTMS induced structural plasticity in mature granule cells, as evidenced by increased dendritic length and number of intersections. However, the stimulation did not increase the proliferation of the dentate gyrus progenitor cells. On the contrary, the stimulated mice showed increased dendritic complexity of newly generated neurons. Moreover, 1-Hz rTMS resulted in antidepressant-like effects in the tail suspension test, but it did not affect anxiety-like behaviors. Therefore, our results indicate that 1-Hz rTMS modulates dentate gyrus morphological plasticity in mature and newly generated neurons. Furthermore, our data provide some evidence of an association between the antidepressant-like activity of 1-Hz rTMS and structural plasticity in the hippocampus

    Aging and Parkinson's Disease: Inflammaging, neuroinflammation and biological remodeling as key factors in pathogenesis

    Get PDF
    In order to better understand the pathogenesis of Parkinson's Disease (PD) it is important to consider possible contributory factors inherent to the aging process, as age-related changes in a number of physiological systems (perhaps incurred within particular environments) appear to influence the onset and progression of neurodegenerative disorders. Accordingly, we posit that a principal mechanism underlying PD is inflammaging, i.e. the chronic inflammatory process characterized by an imbalance of pro- and anti-inflammatory mechanisms which has been recognized as operative in several age-related, and notably neurodegenerative diseases. Recent conceptualization suggests that inflammaging is part of the complex adaptive mechanisms (\ue2\u80\u9cre-modeling\ue2\u80\u9d) that are ongoing through the lifespan, and which function to prevent or mitigate endogenous processes of tissue disruption and degenerative change(s). The absence of an adequate anti-inflammatory response can fuel inflammaging, which propagates on both local (i.e.- from cell to cell) and systemic levels (e.g.- via exosomes and other molecules present in the blood). In general, this scenario is compatible with the hypothesis that inflammaging represents a hormetic or hormetic-like effect, in which low levels of inflammatory stress may prompt induction of anti-inflammatory mediators and mechanisms, while sustained pro-inflammatory stress incurs higher and more durable levels of inflammatory substances, which, in turn prompt a local-to-systemic effect and more diverse inflammatory response(s). Given this perspective, new treatments of PD may be envisioned that strategically are aimed at exerting hormetic effects to sustain anti-inflammatory responses, inclusive perhaps, of modulating the inflammatory influence of the gut microbiota

    Osteoporosis and alzheimer pathology: Role of cellular stress response and hormetic redox signaling in aging and bone remodeling

    Get PDF
    Alzheimer’s disease (AD) and osteoporosis are multifactorial progressive degenerative disorders. Increasing evidence shows that osteoporosis and hip fracture are common complication observed in AD patients, although the mechanisms underlying this association remain poorly understood. Reactive oxygen species (ROS) are emerging as intracellular redox signaling molecules involved in the regulation of bone metabolism, including receptor activator of nuclear factor-κB ligand-dependent osteoclast differentiation, but they also have cytotoxic effects that include lipoperoxidation and oxidative damage to proteins and DNA. ROS generation, which is implicated in the regulation of cellular stress response mechanisms, is an integrated, highly regulated, process under control of redox sensitive genes coding for redox proteins called vitagenes. Vitagenes, encoding for proteins such as heat shock proteins (Hsps) Hsp32, Hsp70, the thioredoxin, and the sirtuin protein, represent a systems controlling a complex network of intracellular signaling pathways relevant to life span and involved in the preservation of cellular homeostasis under stress conditions. Consistently, nutritional anti-oxidants have demonstrated their neuroprotective potential through a hormetic-dependent activation of vitagenes. The biological relevance of dose–response affects those strategies pointing to the optimal dosing to patients in the treatment of numerous diseases. Thus, the heat shock response has become an important hormetic target for novel cytoprotective strategies focusing on the pharmacological development of compounds capable of modulating stress response mechanisms. Here we discuss possible signaling mechanisms involved in the activation of vitagenes which, relevant to bone remodeling and through enhancement of cellular stress resistance provide a rationale to limit the deleterious consequences associated to homeostasis disruption with consequent impact on the aging process

    A novel composite formulation of palmitoylethanolamide and quercetin decreases inflammation and relieves pain in inflammatory and osteoarthritic pain models

    Get PDF
    Background: Osteoarthritis (OA) is a common progressive joint disease in dogs and cats. The goal of OA treatment is to reduce inflammation, minimize pain, and maintain joint function. Currently, non-steroidal anti-inflammatory drugs (e.g., meloxicam) are the cornerstone of treatment for OA pain, but side effects with long-term use pose important challenges to veterinary practitioners when dealing with OA pain. Palmitoylethanolamide (PEA) is a naturally-occurring fatty acid amide, locally produced on demand by tissues in response to stress. PEA endogenous levels change during inflammatory and painful conditions, including OA, i.e., they are typically increased during acute conditions and decreased in chronic inflammation. Systemic treatment with PEA has anti-inflammatory and pain-relieving effects in several disorders, yet data are lacking in OA. Here we tested a new composite, i.e., PEA co-ultramicronized with the natural antioxidant quercetin (PEA-Q), administered orally in two different rat models of inflammatory and OA pain, namely carrageenan paw oedema and sodium monoiodoacetate (MIA)-induced OA. Oral treatment with meloxicam was used as benchmark. Results: PEA-Q decreased inflammatory and hyperalgesic responses induced by carrageenan injection, as shown by: (i) paw oedema reduction, (ii) decreased severity in histological inflammatory score, (iii) reduced activity of myeloperoxidase, i.e., a marker of inflammatory cell infiltration, and (iv) decreased thermal hyperalgesia. Overall PEA-Q showed superior effects compared to meloxicam. In MIA-treated animals, PEA-Q exerted the following effects: (i) reduced mechanical allodynia and improved locomotor function, (ii) protected cartilage against MIA-induced histological damage, and (iii) counteracted the increased serum concentration of tumor necrosis factor alpha, interleukin 1 beta, metalloproteases 1, 3, 9 and nerve growth factor. The magnitude of these effects was comparable to, or even greater than, those of meloxicam. Conclusion: The present findings shed new light on some of the inflammatory and nociceptive pathways and mediators targeted by PEA-Q and confirm its anti-inflammatory and pain-relieving effects in rodent OA pain models. The translatability of these observations to canine and feline OA pain is currently under investigation

    Neuroprotective Effect of Artesunate in Experimental Model of Traumatic Brain Injury

    Get PDF
    Traumatic brain injuries (TBI) are an important public health challenge. In addition, subsequent events at TBI can compromise the quality of life of these patients. In fact, TBI is associated with several complications for both long and short term, some evidence shows how TBI is associated with a decline in cognitive functions such as the risk of developing dementia, cerebral atrophy, and Parkinson disease. After the direct damage from TBI, a key role in TBI injury is played by the inflammatory response and oxidative stress, that contributes to tissue damage and to neurodegenerative processes, typical of secondary injury, after TBI. Given the complex series of events that are involved after TBI injury, a multitarget pharmacological approach is needed. Artesunate is a more stable derivative of its precursor artemisin, a sesquiterpene lactone obtained from a Chinese plant Artemisia annua, a plant used for centuries in traditional Chinese medicine. artesunate has been shown to be a pluripotent agent with different pharmacological actions. therefore, in this experimental model of TBI we evaluated whether the treatment with artesunate at the dose of 30 mg\Kg, had an efficacy in reducing the neuroinflammatory process after TBI injury, and in inhibiting the NLRP3 inflammasome pathway, which plays a key role in the inflammatory process. We also assessed whether treatment with artesunate was able to exert a neuroprotective action by modulating the release of neurotrophic factors. our results show that artesunate was able to reduce the TBI-induced lesion, it also showed an anti-inflammatory action through the inhibition of Nf-kb, release of proinflammatory cytokines IL-1β and TNF-α and through the inhibition NLRP3 inflammasome complex, furthermore was able to reduce the activation of astrocytes and microglia (GFAP, Iba-1). Finally, our results show that the protective effects of artesunate also occur through the modulation of neurotrophic factors (BDNF, GDNF, NT-3) that play a key role in neuronal survival
    • …
    corecore