139 research outputs found

    The Magnetic Properties of Heating Events on High-Temperature Active Region Loops

    Full text link
    Understanding the relationship between the magnetic field and coronal heating is one of the central problems of solar physics. However, studies of the magnetic properties of impulsively heated loops have been rare. We present results from a study of 34 evolving coronal loops observed in the Fe XVIII line component of AIA/SDO 94 A filter images from three active regions with different magnetic conditions. We show that the peak intensity per unit cross-section of the loops depends on their individual magnetic and geometric properties. The intensity scales proportionally to the average field strength along the loop (BavgB_{avg}) and inversely with the loop length (LL) for a combined dependence of (Bavg/L)0.52±0.13(B_{avg}/L)^{0.52\pm0.13}. These loop properties are inferred from magnetic extrapolations of the photospheric HMI/SDO line-of-sight and vector magnetic field in three approximations: potential and two Non Linear Force-Free (NLFF) methods. Through hydrodynamic modeling (EBTEL model) we show that this behavior is compatible with impulsively heated loops with a volumetric heating rate that scales as Ï”H∌Bavg0.3±0.2/L0.2±0.10.2\epsilon_H\sim B_{avg}^{0.3\pm0.2}/L^{0.2\pm^{0.2}_{0.1}}.Comment: Astrophysical Journal, in pres

    Transition region and chromospheric signatures of impulsive heating events. II. Modeling

    Get PDF
    Results from the Solar Maximum Mission showed a close connection between the hard X-ray (HXR) and transition region (TR) emission in solar flares. Analogously, the modern combination of RHESSI and IRIS data can inform the details of heating processes in ways that were never before possible. We study a small event that was observed with RHESSI, IRIS, SDO, and Hinode, allowing us to strongly constrain the heating and hydrodynamical properties of the flare, with detailed observations presented in a previous paper. Long duration redshifts of TR lines observed in this event, as well as many other events, are fundamentally incompatible with chromospheric condensation on a single loop. We combine RHESSI and IRIS data to measure the energy partition among the many magnetic strands that comprise the flare. Using that observationally determined energy partition, we show that a proper multithreaded model can reproduce these redshifts in magnitude, duration, and line intensity, while simultaneously being well constrained by the observed density, temperature, and emission measure. We comment on the implications for both RHESSI and IRIS observations of flares in general, namely that: (1) a single loop model is inconsistent with long duration redshifts, among other observables; (2) the average time between energization of strands is less than 10 s, which implies that for a HXR burst lasting 10 minutes, there were at least 60 strands within a single IRIS pixel located on the flare ribbon; (3) the majority of these strands were explosively heated with an energy distribution well described by a power law of slope »-1.6; (4) the multi-stranded model reproduces the observed line profiles, peak temperatures, differential emission measure distributions, and densities

    Towards a Quantitative Comparison of Magnetic Field Extrapolations and Observed Coronal Loops

    Full text link
    It is widely believed that loops observed in the solar atmosphere trace out magnetic field lines. However, the degree to which magnetic field extrapolations yield field lines that actually do follow loops has yet to be studied systematically. In this paper we apply three different extrapolation techniques - a simple potential model, a NLFF model based on photospheric vector data, and a NLFF model based on forward fitting magnetic sources with vertical currents - to 15 active regions that span a wide range of magnetic conditions. We use a distance metric to assess how well each of these models is able to match field lines to the 12,202 loops traced in coronal images. These distances are typically 1-2". We also compute the misalignment angle between each traced loop and the local magnetic field vector, and find values of 5-12∘^\circ. We find that the NLFF models generally outperform the potential extrapolation on these metrics, although the differences between the different extrapolations are relatively small. The methodology that we employ for this study suggests a number of ways that both the extrapolations and loop identification can be improved.Comment: Accepted for publication in Ap

    Global Burden of Invasive Nontyphoidal Salmonella Disease, 2010

    Get PDF
    Nontyphoidal Salmonella is a major cause of bloodstream infections worldwide, and HIV-infected persons and malaria-infected and malnourished children are at increased risk for the disease. We conducted a systematic literature review to obtain age group–specific, population-based invasive nontyphoidal Salmonella (iNTS) incidence data. Data were categorized by HIV and malaria prevalence and then extrapolated by using 2010 population data. The case-fatality ratio (CFR) was determined by expert opinion consensus. We estimated that 3.4 (range 2.1–6.5) million cases of iNTS disease occur annually (overall incidence 49 cases [range 30–94] per 100,000 population). Africa, where infants, young children, and young adults are most affected, had the highest incidence (227 cases [range 152–341] per 100,000 population) and number of cases (1.9 [range 1.3–2.9] million cases). An iNTS CFR of 20% yielded 681,316 (range 415,164–1,301,520) deaths annually. iNTS disease is a major cause of illness and death globally, particularly in Africa. Improved understanding of the epidemiology of iNTS is needed

    Febrile Illness Evaluation in a Broad Range of Endemicities (FIEBRE): protocol for a multisite prospective observational study of the causes of fever in Africa and Asia.

    Get PDF
    INTRODUCTION NlmCategory: BACKGROUND content: Fever commonly leads to healthcare seeking and hospital admission in sub-Saharan Africa and Asia. There is only limited guidance for clinicians managing non-malarial fevers, which often results in inappropriate treatment for patients. Furthermore, there is little evidence for estimates of disease burden, or to guide empirical therapy, control measures, resource allocation, prioritisation of clinical diagnostics or antimicrobial stewardship. The Febrile Illness Evaluation in a Broad Range of Endemicities (FIEBRE) study seeks to address these information gaps. - Label: METHODS AND ANALYSIS NlmCategory: UNASSIGNED content: FIEBRE investigates febrile illness in paediatric and adult outpatients and inpatients using standardised clinical, laboratory and social science protocols over a minimum 12-month period at five sites in sub-Saharan Africa and Southeastern and Southern Asia. Patients presenting with fever are enrolled and provide clinical data, pharyngeal swabs and a venous blood sample; selected participants also provide a urine sample. Laboratory assessments target infections that are treatable and/or preventable. Selected point-of-care tests, as well as blood and urine cultures and antimicrobial susceptibility testing, are performed on site. On day 28, patients provide a second venous blood sample for serology and information on clinical outcome. Further diagnostic assays are performed at international reference laboratories. Blood and pharyngeal samples from matched community controls enable calculation of AFs, and surveys of treatment seeking allow estimation of the incidence of common infections. Additional assays detect markers that may differentiate bacterial from non-bacterial causes of illness and/or prognosticate illness severity. Social science research on antimicrobial use will inform future recommendations for fever case management. Residual samples from participants are stored for future use. - Label: ETHICS AND DISSEMINATION NlmCategory: UNASSIGNED content: Ethics approval was obtained from all relevant institutional and national committees; written informed consent is obtained from all participants or parents/guardians. Final results will be shared with participating communities, and in open-access journals and other scientific fora. Study documents are available online (https://doi.org/10.17037/PUBS.04652739)

    Typhoid Fever and Invasive Nontyphoid Salmonellosis, Malawi and South Africa

    Get PDF
    To determine the prevalence of invasive nontyphoid salmonellosis and typhoid fever in Malawi and South Africa, we compared case frequency and patient age distribution. Invasive nontyphoid salmonellosis showed a clear bimodal age distribution; the infection developed in women at a younger age than in men. Case frequency for typhoid fever was lower than for salmonellosis

    Modelling acquired resistance to DOT1L inhibition exhibits the adaptive potential of KMT2A-rearranged acute lymphoblastic leukemia

    Get PDF
    In KMT2A-rearranged acute lymphoblastic leukemia (ALL), an aggressive malignancy, oncogenic KMT2A-fusion proteins inappropriately recruit DOT1L to promote leukemogenesis, highlighting DOT1L as an attractive therapeutic target. Unfortunately, treatment with the first-in-class DOT1L inhibitor pinometostat eventually leads to non-responsiveness. To understand this we established acquired pinometostat resistance in pediatric KMT2A::AFF1+ B-ALL cells. Interestingly, these cells became mostly independent of DOT1L-mediated H3K79 methylation, but still relied on the physical presence of DOT1L, HOXA9 and the KMT2A::AFF1 fusion. Moreover, these cells selectively lost the epigenetic regulation and expression of various KMT2A-fusion target genes such as PROM1/CD133, while other KMT2A::AFF1 target genes, including HOXA9 and CDK6 remained unaffected. Concomitantly, these pinometostat-resistant cells showed upregulation of several myeloid-associated genes, including CD33 and LILRB4/CD85k. Taken together, this model comprehensively shows the adaptive potential of KMT2A-rearranged ALL cells upon losing dependency on one of its main oncogenic properties
    • 

    corecore