21 research outputs found

    Modeling of residual stresses in structural stainless steel sections

    Get PDF
    The influence of residual stresses on structural members is to cause premature yielding and loss of stiffness, often leading to deterioration of load carrying capacity. Knowledge of their magnitude and distribution is therefore important for both structural design and finite-element simulations, and hence extensive studies have been performed on structural carbon steel components. With greater emphasis now being placed on durability and reducing consumption of resources, the use of stainless steel in construction is growing, heralding the need for a more precise understanding of its structural response. Stainless steel exhibits differing physical and thermal properties from carbon steel, both of which influence the formation of residual stresses, and it cannot simply be assumed that residual stress models for carbon steel are also appropriate for stainless steel. This paper examines all existing data on residual stresses in stainless steel sections, including data generated from a recent experimental program carried out at Imperial College, London and summarized herein. The collated residual stress data have been used to develop models for predicting the magnitude and distribution of residual stresses in press braked, cold rolled, hot rolled, and fabricated stainless steel structural sections

    Life-cycle costing of metallic structures

    Get PDF
    Structural material selection has traditionally been based on Initial material cost. However, growing pressure on the construction industry to consider the longer-term financial and environmental implications of projects is encouraging a more holistic view. Thus, materials with higher initial costs, but which offer cost savings over the life cycle of a structure, are gaining increasing recognition. The life-cycle costs of structures of two such metallic materials, namely aluminium alloy and stainless steel, are compared with those of ordinary structural carbon steel in the present study. Two structural applications - a typical office building and a bridge - are analysed, while offshore applications are briefly discussed. The ratio of initial material cost per tonne was assumed to be 1.0:2.5:4.0 (carbon steel:aluminium alloy:stainless steel). Following a preliminary structural design to current European design standards taking due account of the material densities and structural properties (principally strength and stiffness), it was found that on an initial cost basis, carbon steel offers the most competitive solution for both the building and the bridge. However, considering the additional life-cycle costs including maintenance costs, end-of-life costs and the residual value of the structure (appropriately discounted to present values), the results indicate that carbon steel offers the most competitive life-cycle solution for the office building but delivers the most expensive life-cycle solution for the bridge. Overall, it is concluded that on a whole-life basis aluminium alloy and stainless steel may offer more competitive solutions than carbon steel for bridges and exposed areas of building structures

    Residual stress analysis of structural stainless steel sections

    No full text
    The magnitude and distribution of residual stresses in structural carbon steel sections have been thoroughly investigated. However, few residual stress measurements have been made on structural stainless steel sections. Stainless steel has differing material stress–strain characteristics and thermal properties to carbon steel, both of which influence the formation of residual stresses. This suggests that established carbon steel residual stress models may not be appropriate for stainless steel. With increased use of stainless steel in load bearing applications, it is important to establish the residual stresses that exist within structural members. An experimental program to quantify the residual stresses in stainless steel sections from three different production routes has therefore been carried out. Comprehensive residual stress distributions have been obtained for three hot rolled angles, eight press braked angles and seven cold rolled box sections, with a total of over 800 readings taken. This paper presents the experimental techniques implemented and the residual stress distributions obtained as well as discussing the assumptions commonly made regarding through thickness residual stress variations. In the hot rolled and press braked sections, residual stresses were typically found to be below 20% of the material 0.2% proof stress, though for the cold rolled box sections, whilst membrane residual stresses were relatively low, bending residual stresses were found to be between 40% and 70% of the material 0.2% proof stress
    corecore