3,350 research outputs found
The effect of Turbulence Models on Numerical Prediction of Air Flow within Street Canyons
November 15-17, Belgrad
The Very Massive Star Content of the Nuclear Star Clusters in NGC 5253
The blue compact dwarf galaxy NGC 5253 hosts a very young starburst
containing twin nuclear star clusters, separated by a projected distance of 5
pc. One cluster (#5) coincides with the peak of the H-alpha emission and the
other (#11) with a massive ultracompact H II region. A recent analysis of these
clusters shows that they have a photometric age of 1+/-1 Myr, in apparent
contradiction with the age of 3-5 Myr inferred from the presence of Wolf-Rayet
features in the cluster #5 spectrum. We examine Hubble Space Telescope
ultraviolet and Very Large Telescope optical spectroscopy of #5 and show that
the stellar features arise from very massive stars (VMS), with masses greater
than 100 Msun, at an age of 1-2 Myr. We further show that the very high
ionizing flux from the nuclear clusters can only be explained if VMS are
present. We investigate the origin of the observed nitrogen enrichment in the
circum-cluster ionized gas and find that the excess N can be produced by
massive rotating stars within the first 1 Myr. We find similarities between the
NGC 5253 cluster spectrum and those of metal poor, high redshift galaxies. We
discuss the presence of VMS in young, star-forming galaxies at high redshift;
these should be detected in rest frame UV spectra to be obtained with the James
Webb Space Telescope. We emphasize that population synthesis models with upper
mass cut-offs greater than 100 Msun are crucial for future studies of young
massive star clusters at all redshifts.Comment: 11 pages, 7 figures, accepted for publication in Astrophysical
Journa
Study of drift-field solar cells damaged by low-energy protons Progress report, Sep. 10 - Oct. 15, 1965
Irradiation damage of drift-field solar cells by low energy protons - computer analysis of current-voltage and spectral response dat
Recommended from our members
The Wolf-Rayet population of Westerlund 1
New NTT/SOFI near-IR narrow-band imaging and spectroscopy reveals an additional four Wolf-Rayet (WR) stars in the massive cluster Westerlund 1, bringing the total WR population to 24. Sixteen of the WR stars in Wd1 have been classified WN5–11, while eight are WC8–9. An observed WR to RSG/YHG ratio of ∼3 suggests an age of 4.5–5.0 Myr, with WR stars descended from 40–55MSolar progenitors. On the basis of dust and hard X-ray emission, we estimate that 40–65% are probable members of massive star binary systems
Master Teacher Interview, Dr. David J. Tarver
Written interview with Master Teacher David Tarver for ACES 803 Qualitative Research.https://scholars.fhsu.edu/ors/1279/thumbnail.jp
- …