129 research outputs found

    Investigative decision-making in public corruption cases: Factors influencing case outcomes

    Get PDF
    Public corruption undermines the rule of law that is crucial to the maintenance of governmental legitimacy and peaceful co-existence. As political divisiveness has grown, politicians have called public corruption investigations “witch hunts” and part of partisan politics, rather than a search for justice. Contemporary attacks on law enforcement charge that they are acting with political motivation which further undermines the legitimacy of these investigations. It is important for research to delve into how the investigative processes maintain their fact-finding missions in support of the rule of law. This study addresses how public corruption investigations occur and how the investigations themselves are conducted. First, federal prosecution data are used to understand the frequency of investigations over the last thirty years. Second, interviews with 40 former investigators and prosecutors examines the process, protocols, tools and resources needed for successful corruption investigations. Investigations require interagency cooperation (especially at different levels of government) and particular attention to the use of investigative tools that ensure the legitimacy of the law in the eyes of the accused, the courts and the general public. In addition, a decline in public corruption cases is seen in recent years with the US prosecution effort diverted to immigration cases

    The P Cygni supergiant [OMN2000] LS1 – implications for the star formation history of W51

    Get PDF
    Original article can be found at: http://www.aanda.org/ Copyright The European Southern Observatory (ESO) DOI: 10.1051/0004-6361/200911980Aims. We investigate the nature of the massive star [OMN2000] LS1 and use these results to constrain the history of star formation within the host complex W51. Methods. We utilised a combination of near-IR spectroscopy and non-LTE model atmosphere analysis to derive the physical properties of [OMN2000] LS1 , and a combination of theoretical evolutionary calculations and Monte Carlo simulations to apply limits on the star formation history of W51. Results. We find the spectrum of [OMN2000] LS1 to be consistent with that of a P Cygni supergiant. With a temperature in the range of 13.2–13.7 kK and log( ) , it is significantly cooler, less luminous, and less massive than proposed by previous authors. The presence of such a star within W51 shows that star formation has been underway for at least 3 Myr, while the formation of massive O stars is still on going. The lack of a population of evolved red supergiants within the complex shows that the rate of formation of young massive clusters at ages 9 Myr was lower than currently observed. We find no evidence of internally triggered, sequential star formation within W51, and favour the suggestion that star formation has proceeded at multiple indepedent sites within the GMC. Along with other examples, such as the G305 and Carina star-forming regions, we suggest that W51 is a Galactic analogue of the ubiquitous star cluster complexes seen in external galaxies such as M51 and NGC2403.Peer reviewe

    NLTE wind models of hot subdwarf stars

    Full text link
    We calculate NLTE models of stellar winds of hot compact stars (central stars of planetary nebulae and subdwarf stars). The studied range of subdwarf parameters is selected to cover a large part of these stars. The models predict the wind hydrodynamical structure and provide mass-loss rates for different abundances. Our models show that CNO elements are important drivers of subdwarf winds, especially for low-luminosity stars. We study the effect of X-rays and instabilities on these winds. Due to the line-driven wind instability, a significant part of the wind could be very hot.Comment: 7 pages, to appear in Astrophysics and Space Science. The final publication will be available at springerlink.com

    The VLT-FLAMES survey of massive stars: Wind properties and evolution of hot massive stars in the LMC

    Full text link
    [Abridged] We have studied the optical spectra of 28 O- and early B-type stars in the Large Magellanic Cloud, 22 of which are associated with the young star-forming region N11. Stellar parameters are determined using an automated fitting method, combining the stellar atmosphere code FASTWIND with the genetic-algorithm optimisation routine PIKAIA. Results for stars in the LH9 and LH10 associations of N11 are consistent with a sequential star formation scenario, in which activity in LH9 triggered the formation of LH10. Our sample contains four stars of spectral type O2, of which the hottest is found to be ~49-54 kK (cf. ~45-46 kK for O3 stars). The masses of helium-enriched dwarfs and giants are systematically lower than those implied by non-rotating evolutionary tracks. We interpret this as evidence for efficient rotationally-enhanced mixing, leading to the surfacing of primary helium and to an increase of the stellar luminosity. This result is consistent with findings for SMC stars by Mokiem et al. For bright giants and supergiants no such mass-discrepancy is found, implying that these stars follow tracks of modestly (or non-)rotating objects. Stellar mass-loss properties were found to be intermediate to those found in massive stars in the Galaxy and the SMC, and comparisons with theoretical predictions at LMC metallicity yielded good agreement over the luminosity range of our targets, i.e. 5.0 < log L/L(sun) < 6.1

    The theory of stellar winds

    Full text link
    We present a brief overview of the theory of stellar winds with a strong emphasis on the radiation-driven outflows from massive stars. The resulting implications for the evolution and fate of massive stars are also discussed. Furthermore, we relate the effects of mass loss to the angular momentum evolution, which is particularly relevant for the production of long and soft gamma-ray bursts. Mass-loss rates are not only a function of the metallicity, but are also found to depend on temperature, particularly in the region of the bi-stability jump at 21 000 Kelvin. We highlight the role of the bi-stability jump for Luminous Blue Variable (LBV) stars, and discuss suggestions that LBVs might be direct progenitors of supernovae. We emphasize that radiation-driven wind studies rely heavily on the input opacity data and linelists, and that these are thus of fundamental importance to both the mass-loss predictions themselves, as well as to our overall understanding of the lives and deaths of massive stars.Comment: 6 pages, invited review Astrophysics and Space Science, Vol 336, Issue 1, pp. 163-167 (special HEDLA 2010 Issue

    The Tarantula massive binary monitoring: III. Atmosphere analysis of double-lined spectroscopic systems

    Get PDF
    Context. Accurate stellar parameters of individual objects in binary systems are essential to constrain the effects of binarity on stellar evolution. These parameters serve as a prerequisite to probing existing and future theoretical evolutionary models. Aims. We aim to derive the atmospheric parameters of the 31 double-lined spectroscopic binaries in the Tarantula Massive Binary Monitoring sample. This sample, composed of detached, semi-detached and contact systems with at least one of the components classified as an O-type star, is an excellent test-bed to study how binarity can impact our knowledge of the evolution of massive stars. Methods. In the present paper, 32 epochs of FLAMES/GIRAFFE spectra are analysed by using spectral disentangling to construct the individual spectra of 62 components. We then apply the CMFGEN atmosphere code to determine their stellar parameters and their helium, carbon, and nitrogen surface abundances. Results. Among the 31 systems that we study in the present paper, we identify between 48 and 77% of them as detached, likely pre-interacting systems, 16% as semi-detached systems, and between 5 and 35% as systems in or close to contact phase. Based on the properties of their components, we show that the effects of tides on chemical mixing are limited. Components on longer-period orbits show higher nitrogen enrichment at their surface than those on shorter-period orbits, in contrast to expectations of rotational or tidal mixing, implying that other mechanisms play a role in this process. For semi-detached systems, components that fill their Roche lobe are mass donors. They exhibit higher nitrogen content at their surface and rotate more slowly than their companions. By accreting new material, their companions spin faster and are likely rejuvenated. Their locations in the N − v sin i diagram tend to show that binary products are good candidates to populate the two groups of stars (slowly rotating, nitrogen-enriched objects and rapidly rotating non-enriched objects) that cannot be reproduced through single-star population synthesis. Finally, we find no peculiar surface abundances for the components in (over-)contact systems, as has been suggested by evolutionary models for tidal mixing. Conclusions. This sample, consisting of 31 massive binary systems, is the largest sample of binaries composed of at least one O-type star to be studied in such a homogeneous way by applying spectral disentangling and atmosphere modelling. The study of these objects gives us strong observational constraints to test theoretical binary evolutionary tracks

    The R136 star cluster dissected with Hubble Space Telescope/STIS. II. Physical properties of the most massive stars in R136

    Get PDF
    We present an optical analysis of 55 members of R136, the central cluster in the Tarantula Nebula of the Large Magellanic Cloud. Our sample was observed with STIS aboard the Hubble Space Telescope, is complete down to about 40 M⊙, and includes 7 very massive stars with masses over 100 M⊙. We performed a spectroscopic analysis to derive their physical properties. Using evolutionary models we find that the initial mass function (IMF) of massive stars in R136 is suggestive of being top-heavy with a power-law exponent γ ≈ 2 ± 0.3, but steeper exponents cannot be excluded. The age of R136 lies between 1 and 2 Myr with a median age of around 1.6 Myr. Stars more luminous than log L/L⊙ = 6.3 are helium enriched and their evolution is dominated by mass loss, but rotational mixing or some other form of mixing could be still required to explain the helium composition at the surface. Stars more massive than 40 M⊙ have larger spectroscopic than evolutionary masses. The slope of the wind-luminosity relation assuming unclumped stellar winds is 2.41 ± 0.13 which is steeper than usually obtained (∼1.8). The ionising (log Q0 [ph/s] = 51.4) and mechanical (log LSW [erg/s] = 39.1) output of R136 is dominated by the most massive stars (>100 M⊙). R136 contributes around a quarter of the ionising flux and around a fifth of the mechanical feedback to the overall budget of the Tarantula Nebula. For a census of massive stars of the Tarantula Nebula region we combined our results with the VLT-FLAMES Tarantula Survey plus other spectroscopic studies. We observe a lack of evolved Wolf-Rayet stars and luminous blue and red supergiants

    The VLT-FLAMES Tarantula Survey

    Get PDF
    A spectroscopic analysis has been undertaken for the B-type multiple systems (excluding those with supergiant primaries) in the VLT-FLAMES Tarantula Survey (VFTS). Projected rotational velocities, vesini, for the primaries have been estimated using a Fourier Transform technique and confirmed by fitting rotationally broadened profiles. A subset of 33 systems with vesini ≤ 80 km s-1 have been analysed using a TLUSTY grid of model atmospheres to estimate stellar parameters and surface abundances for the primaries. The effects of a potential flux contribution from an unseen secondary have also been considered. For 20 targets it was possible to reliably estimate their effective temperatures (Teff) but for the other 13 objects it was only possible to provide a constraint of 20 000 ≤ Teff ≤ 26 000 K – the other parameters estimated for these targets will be consequently less reliable. The estimated stellar properties are compared with evolutionary models and are generally consistent with their membership of 30 Doradus, while the nature of the secondaries of 3 SB2 system is discussed. A comparison with a sample of single stars with vesini ≤ 80 km s-1 obtained from the VFTS and analysed with the same techniques implies that the atmospheric parameters and nitrogen abundances of the two samples are similar. However, the binary sample may have a lack of primaries with significant nitrogen enhancements, which would be consistent with them having low rotational velocities and having effectively evolved as single stars without significant rotational mixing. This result, which may be actually a consequence of the limitations of the pathfinder investigation presented in this paper, should be considered as a motivation for spectroscopic abundance analysis of large samples of binary stars, with high quality observational data
    • …
    corecore