19 research outputs found

    Genetic Drivers of Kidney Defects in the DiGeorge Syndrome

    Get PDF
    Background The DiGeorge syndrome, the most common of the microdeletion syndromes, affects multiple organs, including the heart, the nervous system, and the kidney. It is caused by deletions on chromosome 22q11.2; the genetic driver of the kidney defects is unknown. Methods We conducted a genomewide search for structural variants in two cohorts: 2080 patients with congenital kidney and urinary tract anomalies and 22,094 controls. We performed exome and targeted resequencing in samples obtained from 586 additional patients with congenital kidney anomalies. We also carried out functional studies using zebrafish and mice. Results We identified heterozygous deletions of 22q11.2 in 1.1% of the patients with congenital kidney anomalies and in 0.01% of population controls (odds ratio, 81.5; P=4.5×10(-14)). We localized the main drivers of renal disease in the DiGeorge syndrome to a 370-kb region containing nine genes. In zebrafish embryos, an induced loss of function in snap29, aifm3, and crkl resulted in renal defects; the loss of crkl alone was sufficient to induce defects. Five of 586 patients with congenital urinary anomalies had newly identified, heterozygous protein-altering variants, including a premature termination codon, in CRKL. The inactivation of Crkl in the mouse model induced developmental defects similar to those observed in patients with congenital urinary anomalies. Conclusions We identified a recurrent 370-kb deletion at the 22q11.2 locus as a driver of kidney defects in the DiGeorge syndrome and in sporadic congenital kidney and urinary tract anomalies. Of the nine genes at this locus, SNAP29, AIFM3, and CRKL appear to be critical to the phenotype, with haploinsufficiency of CRKL emerging as the main genetic driver. (Funded by the National Institutes of Health and others.)

    Variance of IQ is partially dependent on deletion type among 1,427 22q11.2 deletion syndrome subjects

    Get PDF
    The 22q11.2 deletion syndrome is caused by non‐allelic homologous recombination events during meiosis between low copy repeats (LCR22) termed A, B, C, and D. Most patients have a typical LCR22A‐D (AD) deletion of 3 million base pairs (Mb). In this report, we evaluated IQ scores in 1,478 subjects with 22q11.2DS. The mean of full scale IQ, verbal IQ, and performance IQ scores in our cohort were 72.41 (standard deviation‐SD of 13.72), 75.91(SD of 14.46), and 73.01(SD of 13.71), respectively. To investigate whether IQ scores are associated with deletion size, we examined individuals with the 3 Mb, AD (n = 1,353) and nested 1.5 Mb, AB (n = 74) deletions, since they comprised the largest subgroups. We found that full scale IQ was decreased by 6.25 points (p = .002), verbal IQ was decreased by 8.17 points (p = .0002) and performance IQ was decreased by 4.03 points (p = .028) in subjects with the AD versus AB deletion. Thus, individuals with the smaller, 1.5 Mb AB deletion have modestly higher IQ scores than those with the larger, 3 Mb AD deletion. Overall, the deletion of genes in the AB region largely explains the observed low IQ in the 22q11.2DS population. However, our results also indicate that haploinsufficiency of genes in the LCR22B‐D region (BD) exert an additional negative impact on IQ. Furthermore, we did not find evidence of a confounding effect of severe congenital heart disease on IQ scores in our cohort

    Variance of IQ is partially dependent on deletion type among 1,427 22q11.2 deletion syndrome subjects

    No full text
    The 22q11.2 deletion syndrome is caused by non‐allelic homologous recombination events during meiosis between low copy repeats (LCR22) termed A, B, C, and D. Most patients have a typical LCR22A‐D (AD) deletion of 3 million base pairs (Mb). In this report, we evaluated IQ scores in 1,478 subjects with 22q11.2DS. The mean of full scale IQ, verbal IQ, and performance IQ scores in our cohort were 72.41 (standard deviation‐SD of 13.72), 75.91(SD of 14.46), and 73.01(SD of 13.71), respectively. To investigate whether IQ scores are associated with deletion size, we examined individuals with the 3 Mb, AD (n = 1,353) and nested 1.5 Mb, AB (n = 74) deletions, since they comprised the largest subgroups. We found that full scale IQ was decreased by 6.25 points (p = .002), verbal IQ was decreased by 8.17 points (p = .0002) and performance IQ was decreased by 4.03 points (p = .028) in subjects with the AD versus AB deletion. Thus, individuals with the smaller, 1.5 Mb AB deletion have modestly higher IQ scores than those with the larger, 3 Mb AD deletion. Overall, the deletion of genes in the AB region largely explains the observed low IQ in the 22q11.2DS population. However, our results also indicate that haploinsufficiency of genes in the LCR22B‐D region (BD) exert an additional negative impact on IQ. Furthermore, we did not find evidence of a confounding effect of severe congenital heart disease on IQ scores in our cohort

    Scoliosis in association with the 22q11.2 deletion syndrome : an observational study

    No full text
    OBJECTIVE: The 22q11.2 deletion syndrome (22q11.2DS) is the most common microdeletion syndrome in humans. It is characterised by wide phenotypic variability, including congenital heart disease (CHD), immunodeficiency and scoliosis. However, little is known regarding the prevalence and characteristics of scoliosis in patients with 22q11.2DS. The objective of this study is to assess the prevalence of scoliosis, its characteristics and the association with CHD in patients with 22q11.2DS. DESIGN: This prevalence study is based on physical examination and questionnaires of the world's largest 22q11.2DS longitudinal collected database (n=1393, Children's Hospital of Philadelphia) and was augmented with the scoliosis prevalence based on radiography in a smaller cohort (cross-sectional, University Medical Center Utrecht). PATIENTS: Patients with a laboratory-confirmed 22q11.2 deletion who visited the specialised outpatient clinics were considered for inclusion. MAIN OUTCOME MEASURES: (1) The prevalence of scoliosis, (2) its association with CHD, and (3) the similarity between 22q11.2DS curve patterns and adolescent idiopathic scoliosis (AIS) curve patterns. RESULTS: Within the Philadelphia cohort, the prevalence of scoliosis in patients older than 16 years (n=317) was 48% (n=152). A similar prevalence (49%) was shown for the younger Utrecht cohort (n=97). The occurrence of scoliosis was not associated with the presence of CHD. Sixty-three per cent of patients with scoliosis had a scoliotic curve pattern that resembled AIS. CONCLUSIONS: Clinicians should be aware that scoliosis is highly prevalent (48%-49%) in association with 22q11.2DS, irrespective of other clinical features (eg, the presence of CHD). Furthermore, 22q11.2DS may provide insights into the causes of AIS

    22q11.2 Deletion Syndrome as a Human Model for Idiopathic Scoliosis

    No full text
    To better understand the etiology of idiopathic scoliosis, prospective research into the pre-scoliotic state is required, but this research is practically impossible to carry out in the general population. The use of ‘models’, such as idiopathic-like scoliosis established in genetically modified animals, may elucidate certain elements, but their translatability to the human situation is questionable. The 22q11.2 deletion syndrome (22q11.2DS), with a 20-fold increased risk of developing scoliosis, may be a valuable and more relevant alternative and serve as a human ‘model’ for idiopathic scoliosis. This multicenter study investigates the morphology, dynamic behavior, and presence of intraspinal anomalies in patients with 22q11.2DS and scoliosis compared to idiopathic scoliosis. Scoliosis patients with 22q11.2DS and spinal radiography (n = 185) or MRI (n = 38) were included (mean age 11.6 ± 4.2; median Cobb angle 16°) and compared to idiopathic scoliosis patients from recent literature. Radiographic analysis revealed that 98.4% of 22q11.2DS patients with scoliosis had a curve morphology following predefined criteria for idiopathic curves: eight or fewer vertebrae, an S-shape and no inclusion of the lowest lumbar vertebrae. Furthermore, curve progression was present in 54.2%, with a mean progression rate of 2.5°/year, similar to reports on idiopathic scoliosis with 49% and 2.2–9.6°/year. The prevalence of intraspinal anomalies on MRI was 10.5% in 22q11.2DS, which is also comparable to 11.4% reported for idiopathic scoliosis. This indicates that 22q11.2DS may be a good model for prospective studies to better understand the etiology of idiopathic scoliosis

    Scoliosis in association with the 22q11.2 deletion syndrome : an observational study

    No full text
    OBJECTIVE: The 22q11.2 deletion syndrome (22q11.2DS) is the most common microdeletion syndrome in humans. It is characterised by wide phenotypic variability, including congenital heart disease (CHD), immunodeficiency and scoliosis. However, little is known regarding the prevalence and characteristics of scoliosis in patients with 22q11.2DS. The objective of this study is to assess the prevalence of scoliosis, its characteristics and the association with CHD in patients with 22q11.2DS. DESIGN: This prevalence study is based on physical examination and questionnaires of the world's largest 22q11.2DS longitudinal collected database (n=1393, Children's Hospital of Philadelphia) and was augmented with the scoliosis prevalence based on radiography in a smaller cohort (cross-sectional, University Medical Center Utrecht). PATIENTS: Patients with a laboratory-confirmed 22q11.2 deletion who visited the specialised outpatient clinics were considered for inclusion. MAIN OUTCOME MEASURES: (1) The prevalence of scoliosis, (2) its association with CHD, and (3) the similarity between 22q11.2DS curve patterns and adolescent idiopathic scoliosis (AIS) curve patterns. RESULTS: Within the Philadelphia cohort, the prevalence of scoliosis in patients older than 16 years (n=317) was 48% (n=152). A similar prevalence (49%) was shown for the younger Utrecht cohort (n=97). The occurrence of scoliosis was not associated with the presence of CHD. Sixty-three per cent of patients with scoliosis had a scoliotic curve pattern that resembled AIS. CONCLUSIONS: Clinicians should be aware that scoliosis is highly prevalent (48%-49%) in association with 22q11.2DS, irrespective of other clinical features (eg, the presence of CHD). Furthermore, 22q11.2DS may provide insights into the causes of AIS

    Clinical Effectiveness of Telemedicine-Based Pediatric Genetics Care

    No full text
    BACKGROUND AND OBJECTIVES: Telemedicine may increase access to medical genetics care. However, in the pediatric setting, how telemedicine may affect the diagnostic rate is unknown, partially because of the perceived importance of the dysmorphology physical examination. We studied the clinical effectiveness of telemedicine for patients with suspected or confirmed genetic conditions. METHODS: We conducted a retrospective cohort study of outpatient encounters before and after the widespread implementation of telemedicine (N = 5854). Visit types, diagnoses, patient demographic characteristics, and laboratory data were acquired from the electronic health record. Patient satisfaction was assessed through survey responses. New molecular diagnosis was the primary end point. RESULTS: Patients seen by telemedicine were more likely to report non-Hispanic White ancestry, prefer to speak English, live in zip codes with higher median incomes, and have commercial insurance (all P \u3c .01). Genetic testing was recommended for more patients evaluated by telemedicine than in person (79.5% vs 70.9%; P \u3c .001). Patients seen in person were more likely to have a sample collected, resulting in similar test completion rates (telemedicine, 51.2%; in person, 55.1%; P = .09). There was no significant difference in molecular diagnosis rate between visit modalities (telemedicine, 13.8%; in person, 12.4%; P = .40). CONCLUSIONS: Telemedicine and traditional in-person evaluation resulted in similar molecular diagnosis rates. However, improved methodologies for remote sample collection may be required. This study reveals the feasibility of telemedicine in a large academic medical genetics practice and is applicable to other pediatric specialties with perceived importance of physical examination

    Deletion size analysis of 1,680 22q11.2DS subjects identifies a new recombination hotspot on chromosome 22q11.2

    No full text
    Recurrent, de novo, meiotic non-allelic homologous recombination events between low copy repeats, termed LCR22s, leads to the 22q11.2 deletion syndrome (22q11.2DS; velo-cardio-facial syndrome/DiGeorge syndrome). Although most 22q11.2DS patients have a similar sized 3 million base pair (Mb), LCR22A-D deletion, some have nested LCR22A-B or LCR22A-C deletions. Our goal is to identify additional recurrent 22q11.2 deletions associated with 22q11.2DS, serving as recombination hotspots for meiotic chromosomal rearrangements. Here, using data from Affymetrix 6.0 microarrays on 1,680 22q11.2DS subjects, we identified what appeared to be a nested proximal 22q11.2 deletion in 38 (2.3%) of them. Using molecular and haplotype analyses from 14 subjects and their parent(s) with available DNA, we found essentially three types of scenarios to explain this observation. In eight, the proximal breakpoints occurred in a small sized 12 kb LCR distal to LCR22A, referred to LCR22A+, resulting in LCR22A+-B or LCR22A+-D deletions. Six of these eight subjects had a nested 22q11.2 deletion that occurred during meiosis in a parent carrying a benign 0.2 Mb duplication of the LCR22A-LCR22A+ region with a breakpoint in LCR22A+. Another six had a typical de novo LCR22A-D deletion on one allele and inherited the LCR22A-A+ duplication from the other parent thus appearing on microarrays to have a nested deletion. LCR22A+ maps to an evolutionary breakpoint between mice and humans and appears to serve as a local hotspot for chromosome rearrangements on 22q11.2.status: publishe

    Deletion size analysis of 1,680 22q11.2DS subjects identifies a new recombination hotspot on chromosome 22q11.2

    Get PDF
    Recurrent, de novo, meiotic non-allelic homologous recombination events between low copy repeats, termed LCR22s, leads to the 22q11.2 deletion syndrome (22q11.2DS; velo-cardio-facial syndrome/DiGeorge syndrome). Although most 22q11.2DS patients have a similar sized 3 million base pair (Mb), LCR22A-D deletion, some have nested LCR22A-B or LCR22A-C deletions. Our goal is to identify additional recurrent 22q11.2 deletions associated with 22q11.2DS, serving as recombination hotspots for meiotic chromosomal rearrangements. Here, using data from Affymetrix 6.0 microarrays on 1,680 22q11.2DS subjects, we identified what appeared to be a nested proximal 22q11.2 deletion in 38 (2.3%) of them. Using molecular and haplotype analyses from 14 subjects and their parent(s) with available DNA, we found essentially three types of scenarios to explain this observation. In eight, the proximal breakpoints occurred in a small sized 12 kb LCR distal to LCR22A, referred to LCR22A+, resulting in LCR22A+-B or LCR22A+-D deletions. Six of these eight subjects had a nested 22q11.2 deletion that occurred during meiosis in a parent carrying a benign 0.2 Mb duplication of the LCR22A-LCR22A+ region with a breakpoint in LCR22A+. Another six had a typical de novo LCR22A-D deletion on one allele and inherited the LCR22A-A+ duplication from the other parent thus appearing on microarrays to have a nested deletion. LCR22A+ maps to an evolutionary breakpoint between mice and humans and appears to serve as a local hotspot for chromosome rearrangements on 22q11.2
    corecore