109 research outputs found

    Application of chicken microarrays for gene expression analysis in other avian species

    Get PDF
    BACKGROUND: With the threat of emerging infectious diseases such as avian influenza, whose natural hosts are thought to be a variety of wild water birds including duck, we are armed with very few genomic resources to investigate large scale immunological gene expression studies in avian species. Multiple options exist for conducting large gene expression studies in chickens and in this study we explore the feasibility of using one of these tools to investigate gene expression in other avian species. RESULTS: In this study we utilised a whole genome long oligonucleotide chicken microarray to assess the utility of cross species hybridisation (CSH). We successfully hybridised a number of different avian species to this array, obtaining reliable signals. We were able to distinguish ducks that were infected with avian influenza from uninfected ducks using this microarray platform. In addition, we were able to detect known chicken immunological genes in all of the hybridised avian species. CONCLUSION: Cross species hybridisation using long oligonucleotide microarrays is a powerful tool to study the immune response in avian species with little available genomic information. The present study validated the use of the whole genome long oligonucleotide chicken microarray to investigate gene expression in a range of avian species

    Isolation and detection of microRNA from the egg of chickens

    Get PDF
    BACKGROUND: The egg is a vital part of the chicken developmental process and an important protein source for humans. Despite the chicken egg being a subject of intense research little attention has been given to the role of microRNAs within the egg. FINDINGS: We report a method for the reproducible and reliable isolation of miRNA from the albumen and yolk of chicken eggs. We also report the detection via real-time PCR of a number of miRNAs from both of these biological fluids. CONCLUSIONS: These findings provide an interesting look into the chicken egg and raise questions as to the role that miRNAs maybe playing in the chicken egg. This method of detecting miRNAs in chicken eggs will allow researchers to investigate the presence of an additional level of epigenetic programming in chick development previously unknown and also how this impacts the nutritional value of eggs for human consumption

    Benchmarking differential expression analysis tools for RNA-Seq: normalization-based vs. log-ratio transformation-based methods

    Get PDF
    Background: Count data generated by next-generation sequencing assays do not measure absolute transcript abundances. Instead, the data are constrained to an arbitrary "library size" by the sequencing depth of the assay, and typically must be normalized prior to statistical analysis. The constrained nature of these data means one could alternatively use a log-ratio transformation in lieu of normalization, as often done when testing for differential abundance (DA) of operational taxonomic units (OTUs) in 16S rRNA data. Therefore, we benchmark how well the ALDEx2 package, a transformation-based DA tool, detects differential expression in high-throughput RNA-sequencing data (RNA-Seq), compared to conventional RNA-Seq methods such as edgeR and DESeq2. Results: To evaluate the performance of log-ratio transformation-based tools, we apply the ALDEx2 package to two simulated, and two real, RNA-Seq data sets. One of the latter was previously used to benchmark dozens of conventional RNA-Seq differential expression methods, enabling us to directly compare transformation-based approaches. We show that ALDEx2, widely used in meta-genomics research, identifies differentially expressed genes (and transcripts) from RNA-Seq data with high precision and, given sufficient sample sizes, high recall too (regardless of the alignment and quantification procedure used). Although we show that the choice in log-ratio transformation can affect performance, ALDEx2 has high precision (i.e., few false positives) across all transformations. Finally, we present a novel, iterative log-ratio transformation (now implemented in ALDEx2) that further improves performance in simulations. Conclusions: Our results suggest that log-ratio transformation-based methods can work to measure differential expression from RNA-Seq data, provided that certain assumptions are met. Moreover, these methods have very high precision (i.e., few false positives) in simulations and perform well on real data too. With previously demonstrated applicability to 16S rRNA data, ALDEx2 can thus serve as a single tool for data from multiple sequencing modalities

    Comparative analysis of microRNA expression in mouse and human brown adipose tissue

    Get PDF
    BACKGROUND: In small mammals brown adipose tissue (BAT) plays a predominant role in regulating energy expenditure (EE) via adaptive thermogenesis. New-born babies require BAT to control their body temperature, however its relevance in adults has been questioned. Active BAT has recently been observed in adult humans, albeit in much lower relative quantities than small mammals. Comparing and contrasting the molecular mechanisms controlling BAT growth and development in mice and humans will increase our understanding or how human BAT is developed and may identify potential therapeutic targets to increase EE. MicroRNAs are molecular mechanisms involved in mouse BAT development however, little is known about the miRNA profile in human BAT. The aims of this study were to establish a mouse BAT-enriched miRNA profile and compare this with miRNAs measured in human BAT. To achieve this we firstly established a mouse BAT enriched-miRNA profile by comparing miRNAs expressed in mouse BAT, white adipose tissue and skeletal muscle. Following this the BAT-enriched miRNAs predicted to target genes potentially involved in growth and development were identified. METHODS: MiRNA levels were measured using PCR-based miRNA arrays. Results were analysed using ExpressionSuite software with the global mean expression value of all expressed miRNAs in a givensample used as the normalisation factor. Bio-informatic analyses was used to predict gene targets followed by Ingenuity Pathway Analysis. RESULTS: We identified 35 mouse BAT-enriched miRNAs that were predicted to target genes potentially involved in growth and development. We also identified 145 miRNAs expressed in both mouse and human BAT, of which 25 were enriched in mouse BAT. Of these 25 miRNAs, miR-20a was predicted to target MYF5 and PPARγ, two important genes involved in brown adipogenesis, as well as BMP2 and BMPR2, genes involved in white adipogenesis. For the first time, 69 miRNAs were identified in human BAT but absent in mouse BAT, and 181 miRNAs were expressed in mouse but not in human BAT. CONCLUSION: The present study has identified a small sub-set of miRNAs common to both mouse and human BAT. From this sub-set bioinformatics analysis suggested a potential role of miR-20a in the control of cell fate and this warrants further investigation. The large number of miRNAs found only in mouse BAT or only in human BAT highlights the differing molecular profile between species that is likely to influence the functional role of BAT across species. Nevertheless the BAT-enriched miRNA profiles established in the present study suggest targets to investigate in the control BAT development and EE

    Identification of MicroRNAs Linked to Regulators of Muscle Protein Synthesis and Regeneration in Young and Old Skeletal Muscle

    Get PDF
    Over the course of ageing there is a natural and progressive loss of skeletal muscle mass. The onset and progression of age-related muscle wasting is associated with an attenuated activation of Akt-mTOR signalling and muscle protein synthesis in response to anabolic stimuli such as resistance exercise. MicroRNAs (miRNAs) are novel and important post-transcriptional regulators of numerous cellular processes. The role of miRNAs in the regulation of muscle protein synthesis following resistance exercise is poorly understood. This study investigated the changes in skeletal muscle miRNA expression following an acute bout of resistance exercise in young and old subjects with a focus on the miRNA species predicted to target Akt-mTOR signalling

    propr: An R-package for identifying proportionally abundant features using compositional data analysis

    Full text link
    In the life sciences, many assays measure only the relative abundances of components in each sample. Such data, called compositional data, require special treatment to avoid misleading conclusions. Awareness of the need for caution in analyzing compositional data is growing, including the understanding that correlation is not appropriate for relative data. Recently, researchers have proposed proportionality as a valid alternative to correlation for calculating pairwise association in relative data. Although the question of how to best measure proportionality remains open, we present here a computationally efficient R package that implements three measures of proportionality. In an effort to advance the understanding and application of proportionality analysis, we review the mathematics behind proportionality, demonstrate its application to genomic data, and discuss some ongoing challenges in the analysis of relative abundance data

    Leptin receptor signaling via Janus kinase 2/Signal transducer and activator of transcription 3 impacts on ovarian cancer cell phenotypes

    Full text link
    Ovarian cancer is a leading cause of cancer mortality in women world-wide. Considerable progress has been made to characterize the different subtypes of ovarian cancer, but specific therapies remain limited and prognosis poor. Cytokine signaling via the interleukin-6 receptor (IL-6R) family and related receptors has been implicated in a number of cancers, including those with an ovarian origin. The leptin receptor (LEPR) is structurally related to these receptors and utilizes similar downstream pathways. LEPR has diverse roles in metabolism, appetite and bone formation with obesity linked to both elevated levels of leptin and increased cancer incidence. This study investigated a potential role for LEPR signaling in ovarian cancer. Leptin stimulation led to increased proliferation, survival and migration of LEPR-expressing ovarian cancer cell lines, with the effects shown to be mediated by the downstream Janus kinase 2/Signal transducer and activator of transcription 3 (JAK2/STAT3) pathway. A significant correlation was identified between high co-expression of leptin and LEPR and decreased patient survival. This study collectively suggests that leptin/LEPR signaling via JAK2/STAT3 has the potential to significantly impact on pathogenesis in a subset of ovarian cancer patients who may benefit from strategies that dampen this pathway

    Understanding sequencing data as compositions: an outlook and review

    Get PDF
    Motivation: Although seldom acknowledged explicitly, count data generated by sequencing platforms exist as compositions for which the abundance of each component (e.g. gene or transcript) is only coherently interpretable relative to other components within that sample. This property arises from the assay technology itself, whereby the number of counts recorded for each sample is constrained by an arbitrary total sum (i.e. library size). Consequently, sequencing data, as compositional data, exist in a non-Euclidean space that, without normalization or transformation, renders invalid many conventional analyses, including distance measures, correlation coefficients and multivariate statistical models. Results: The purpose of this review is to summarize the principles of compositional data analysis (CoDA), provide evidence for why sequencing data are compositional, discuss compositionally valid methods available for analyzing sequencing data, and highlight future directions with regard to this field of study

    Histological and global gene expression analysis of the 'lactating' pigeon crop

    Get PDF
    Background: Both male and female pigeons have the ability to produce a nutrient solution in their crop for the nourishment of their young. The production of the nutrient solution has been likened to lactation in mammals, and hence the product has been called pigeon &lsquo;milk&rsquo;. It has been shown that pigeon &lsquo;milk&rsquo; is essential for growth and development of the pigeon squab, and without it they fail to thrive. Studies have investigated the nutritional value of pigeon &lsquo;milk&rsquo; but very little else is known about what it is or how it is produced. This study aimed to gain insight into the process by studying gene expression in the &lsquo;lactating&rsquo; crop.Results: Macroscopic comparison of &lsquo;lactating&rsquo; and non-&rsquo;lactating&rsquo; crop reveals that the &lsquo;lactating&rsquo; crop is enlarged and thickened with two very obvious lateral lobes that contain discrete rice-shaped pellets of pigeon &lsquo;milk&rsquo;. This was characterised histologically by an increase in the number and depth of rete pegs extending from the basal layer of the epithelium to the lamina propria, and extensive proliferation and folding of the germinal layer into the superficial epithelium. A global gene expression profile comparison between &lsquo;lactating&rsquo; crop and non-&rsquo;lactating&rsquo; crop showed that 542 genes are up-regulated in the &lsquo;lactating&rsquo; crop, and 639 genes are down-regulated. Pathway analysis revealed that genes up-regulated in &lsquo;lactating&rsquo; crop were involved in the proliferation of melanocytes, extracellular matrix-receptor interaction, the adherens junction and the wingless (wnt) signalling pathway. Gene ontology analysis showed that antioxidant response and microtubule transport were enriched in &lsquo;lactating&rsquo; crop.Conclusions: There is a hyperplastic response in the pigeon crop epithelium during &lsquo;lactation&rsquo; that leads to localised cellular stress and expression of antioxidant protein-encoding genes. The differentiated, cornified cells that form the pigeon &lsquo;milk&rsquo; are of keratinocyte lineage and contain triglycerides that are likely endocytosed as very low density lipoprotein (VLDL) and repackaged as triglyceride in vesicles that are transported intracellularly by microtubules. This mechanism is an interesting example of the evolution of a system with analogies to mammalian lactation, as pigeon &lsquo;milk&rsquo; fulfils a similar function to mammalian milk, but is produced by a different mechanism.<br /

    A field guide for the compositional analysis of any-omics data

    Get PDF
    Background: Next-generation sequencing (NGS) has made it possible to determine the sequence and relative abundance of all nucleotides in a biological or environmental sample. A cornerstone of NGS is the quantification of RNA or DNA presence as counts. However, these counts are not counts per se: their magnitude is determined arbitrarily by the sequencing depth, not by the input material. Consequently, counts must undergo normalization prior to use. Conventional normalization methods require a set of assumptions: they assume that the majority of features are unchanged and that all environments under study have the same carrying capacity for nucleotide synthesis. These assumptions are often untestable and may not hold when heterogeneous samples are compared. Results: Methods developed within the field of compositional data analysis offer a general solution that is assumption-free and valid for all data. Herein, we synthesize the extant literature to provide a concise guide on how to apply compositional data analysis to NGS count data. Conclusions: In highlighting the limitations of total library size, effective library size, and spike-in normalizations, we propose the log-ratio transformation as a general solution to answer the question, "Relative to some important activity of the cell, what is changing?
    corecore