2,144 research outputs found
Heavy particle concentration in turbulence at dissipative and inertial scales
Spatial distributions of heavy particles suspended in an incompressible
isotropic and homogeneous turbulent flow are investigated by means of high
resolution direct numerical simulations. In the dissipative range, it is shown
that particles form fractal clusters with properties independent of the
Reynolds number. Clustering is there optimal when the particle response time is
of the order of the Kolmogorov time scale . In the inertial range,
the particle distribution is no longer scale-invariant. It is however shown
that deviations from uniformity depend on a rescaled contraction rate, which is
different from the local Stokes number given by dimensional analysis. Particle
distribution is characterized by voids spanning all scales of the turbulent
flow; their signature in the coarse-grained mass probability distribution is an
algebraic behavior at small densities.Comment: 4 RevTeX pgs + 4 color Figures included, 1 figure eliminated second
part of the paper completely revise
Raman excitation spectroscopy of carbon nanotubes: effects of pressure medium and pressure
Raman excitation and emission spectra for the radial breathing mode (RBM) are
reported, together with a preliminary analysis. From the position of the peaks
on the two-dimensional plot of excitation resonance energy against Raman shift,
the chiral indices (m, n) for each peak are identified. Peaks shift from their
positions in air when different pressure media are added - water, hexane,
sulphuric acid - and when the nanotubes are unbundled in water with surfactant
and sonication. The shift is about 2 - 3 cm-1 in RBM frequency, but
unexpectedly large in resonance energy, being spread over up to 100meV for a
given peak. This contrasts with the effect of pressure. The shift of the peaks
of semiconducting nanotubes in water under pressure is orthogonal to the shift
from air to water. This permits the separation of the effects of the pressure
medium and the pressure, and will enable the true pressure coefficients of the
RBM and the other Raman peaks for each (m, n) to be established unambiguously.Comment: 6 pages, 3 Figures, Proceedings of EHPRG 2011 (Paris
Pressure coefficients of Raman modes of carbon nanotubes resolved by chirality: Environmental effect on graphene sheet
Studies of the mechanical properties of single-walled carbon nanotubes are
hindered by the availability only of ensembles of tubes with a range of
diameters. Tunable Raman excitation spectroscopy picks out identifiable tubes.
Under high pressure, the radial breathing mode shows a strong environmental
effect shown here to be largely independent of the nature of the environment .
For the G-mode, the pressure coefficient varies with diameter consistent with
the thick-wall tube model. However, results show an unexpectedly strong
environmental effect on the pressure coefficients. Reappraisal of data for
graphene and graphite gives the G-mode Grueuneisen parameter gamma = 1.34 and
the shear deformation parameter beta = 1.34.Comment: Submitted to Physical Review
Compaction and dilation rate dependence of stresses in gas-fluidized beds
A particle dynamics-based hybrid model, consisting of monodisperse spherical
solid particles and volume-averaged gas hydrodynamics, is used to study
traveling planar waves (one-dimensional traveling waves) of voids formed in
gas-fluidized beds of narrow cross sectional areas. Through ensemble-averaging
in a co-traveling frame, we compute solid phase continuum variables (local
volume fraction, average velocity, stress tensor, and granular temperature)
across the waves, and examine the relations among them. We probe the
consistency between such computationally obtained relations and constitutive
models in the kinetic theory for granular materials which are widely used in
the two-fluid modeling approach to fluidized beds. We demonstrate that solid
phase continuum variables exhibit appreciable ``path dependence'', which is not
captured by the commonly used kinetic theory-based models. We show that this
path dependence is associated with the large rates of dilation and compaction
that occur in the wave. We also examine the relations among solid phase
continuum variables in beds of cohesive particles, which yield the same path
dependence. Our results both for beds of cohesive and non-cohesive particles
suggest that path-dependent constitutive models need to be developed.Comment: accepted for publication in Physics of Fluids (Burnett-order effect
analysis added
Eulerian simulation of the fluid dynamics of helicopter brownout
A computational model is presented that can be used to simulate the development of the dust cloud
that can be entrained into the air when a helicopter is operated close to the ground in desert or dusty
conditions. The physics of this problem, and the associated pathological condition known as ‘brownout’
where the pilot loses situational awareness as a result of his vision being occluded by dust suspended in the
flow around the helicopter, is acknowledged to be very complex. The approach advocated here involves
an approximation to the full dynamics of the coupled particulate-air system. Away from the ground, the
model assumes that the suspended particles remain in near equilibrium under the action of aerodynamic
forces. Close to the ground, this model is replaced by an algebraic sublayer model for the saltation and
entrainment process. The origin of the model in the statistical mechanics of a distribution of particles
governed by aerodynamic forces allows the validity of the method to be evaluated in context by comparing
the physical properties of the suspended particulates to the local properties of the flow field surrounding
the helicopter. The model applies in the Eulerian frame of reference of most conventional Computational
Fluid Dynamics codes and has been coupled with Brown’s Vorticity Transport Model. Verification of the
predictions of the coupled model against experimental data for particulate entrainment and transport in
the flow around a model rotor are encouraging. An application of the coupled model to analyzing the
differences in the geometry and extent of the dust clouds that are produced by single main rotor and
tandem-rotor configurations as they decelerate to land has shown that the location of the ground vortex
and the size of any regions of recirculatory flow, should they exist, play a primary role in governing the
extent of the dust cloud that is created by the helicopter
Bubbly two-phase flow in hydraulic jumps at large Froude numbers
A hydraulic jump is a sudden, rapid transition from a supercritical flow to a subcritical flow. At large inflow Froude numbers, the jump is characterized by a significant amount of entrained air. For this paper, the bubbly two-phase flow properties of steady and strong hydraulic jumps were investigated experimentally. The results demonstrate that the strong air entrainment rate and the depth-averaged void-fraction data highlight a rapid deaeration of the jump roller. The results suggest that the hydraulic jumps are effective aerators and that the rate of detrainment is comparatively smaller at the largest Froude numbers. © 2011 American Society of Civil Engineers
Strengthening Europe's Capability in Biological Ocean Observations
This publication is primarily aimed at stakeholders involved in ocean observing, spanning diverse roles from commissioning,
managing, funding and coordinating, to developing, implementing, or advising on, ocean observation programmes.
Such programmes will have strategic and policy drivers but their main purpose may vary from predominantly researchdriven
scientific purposes to environmental monitoring for providing data and reporting to legally-binding regulations or
directives. The main focus is on European capabilities but set in a global context with the various actors spanning a variety
of geographical scales from national to regional and European. Key stakeholder organizations include environmental or
other agencies; marine research institutions, their researchers and operators; international and regional ocean observing
initiatives and programmes; national, regional and European policy makers and their advisors; national stations for
observations; etc.). It will also be of interest to the wider marine and maritime research and policy community.
The main aim of the publication is to increase the relevance of current (and future) European biological ocean observation
capacity to strengthen global efforts towards our understanding of the ocean and enhance marine biodiversity
conservation, for maintaining a healthy ocean for healthy societies.
This document explains why biological ocean observations are needed to assess progress against national and international
conservation targets, the Sustainable Development Goals (SDGs), the Blue Growth agenda and to contribute to key EU
directives including the Marine Strategy Framework Directive (MSFD). To achieve this, the publication highlights the need
of biological ocean observations to reflect clearly defined hypotheses about potential causes of change, including the
combined impacts of local and global drivers, and to support the management of our impacts on the ocean. Additionally,
it calls for flexible biological ocean observing programmes to capture the relevant drivers operating at multiple spatial
scales, by networking and integration of ongoing monitoring programmes, methodological standardization and
appropriate policies of data integration and dissemination. It then presents key variables, elements and information
products to inform on the status and trends of marine biodiversity
Improved Measurement of the Positive Muon Lifetime and Determination of the Fermi Constant
The mean life of the positive muon has been measured to a precision of 11 ppm
using a low-energy, pulsed muon beam stopped in a ferromagnetic target, which
was surrounded by a scintillator detector array. The result, tau_mu =
2.197013(24) us, is in excellent agreement with the previous world average. The
new world average tau_mu = 2.197019(21) us determines the Fermi constant G_F =
1.166371(6) x 10^-5 GeV^-2 (5 ppm). Additionally, the precision measurement of
the positive muon lifetime is needed to determine the nucleon pseudoscalar
coupling g_P.Comment: As published version (PRL, July 2007
Bias in protein and potassium intake collected with 24-h recalls (EPIC-Soft) is rather comparable across European populations
Purpose: We investigated whether group-level bias of a 24-h recall estimate of protein and potassium intake, as compared to biomarkers, varied across European centers and whether this was influenced by characteristics of individuals or centers. Methods: The combined data from EFCOVAL and EPIC studies included 14 centers from 9 countries (n = 1,841). Dietary data were collected using a computerized 24-h recall (EPIC-Soft). Nitrogen and potassium in 24-h urine collections were used as reference method. Multilevel linear regression analysis was performed, including individual-level (e.g., BMI) and center-level (e.g., food pattern index) variables. Results: For protein intake, no between-center variation in bias was observed in men while it was 5.7% in women. For potassium intake, the between-center variation in bias was 8.9% in men and null in women. BMI was an important factor influencing the biases across centers (p <0.01 in all analyses). In addition, mode of administration (p = 0.06 in women) and day of the week (p = 0.03 in men and p = 0.06 in women) may have influenced the bias in protein intake across centers. After inclusion of these individual variables, between-center variation in bias in protein intake disappeared for women, whereas for potassium, it increased slightly in men (to 9.5%). Center-level variables did not influence the results. Conclusion: The results suggest that group-level bias in protein and potassium (for women) collected with 24-h recalls does not vary across centers and to a certain extent varies for potassium in men. BMI and study design aspects, rather than center-level characteristics, affected the biases across center
- …