2,218 research outputs found

    Simulated propeller slipstream effects on a supercritical wing

    Get PDF
    To quantify the installed performance of high speed (M = 0.8) turboprop propulsion systems, an experimental program designed to assess the magnitude of the aerodynamic interference of a propeller slipstream on a supercritical wing has been conducted. The test was conducted in the NASA Ames 14-foot wind tunnel. An ejector-nacelle propeller slipstream simulator was used to produce a slipstream with characteristics typical of advanced propellers presently being investigated. A supercritical wing-body configuration was used to evaluate the interference effects. A traversing total pressure rake was used to make flow field measurements behind the wing and to calibrate the slipstream simulator. The force results indicated that the interference drag amounted to an increase of ten counts or about 3% of the wing-body drag for a two engine configuration at the nominal propeller operating conditions. However, at the higher swirl angles (11 deg vs. 7 deg nominally) the interference drag was favorable by about the same magnitude

    In-flight propeller flow visualization using fluorescent minitufts

    Get PDF
    Extension of fluorescent minutuft method to in-flight flow visualization on propellers is described. Extremely thin nylon monofilament for the minitufts, is used in a process of attaching them to the test surface with small drops of lacquer-like adhesive, and the use of fluorescence photography for recording the minituft patterns. Using this method, thousands of minitufts can be applied to small, high speed wind tunnel models without affecting the airflow. The minitufts can remain in place throughout a wind tunnel test, permitting nonintrusive flow visualization data to be acquired at any time

    Surface flow visualization using indicators

    Get PDF
    Surface flow visualization using indicators in the cryogenic wind tunnel which requires a fresh look at materials and procedures to accommodate the new test conditions is described. Potential liquid and gaseous indicators are identified. The particular materials illustrate the various requirements an indicator must fulfill. The indicator must respond properly to the flow phenomenon of interest and must be observable. Boundary layer transition is the most important phenomenon for which flow visualization indicators may be employed. The visibility of a particular indicator depends on utilizing various optical or chemical reactions. Gaseous indicators are more difficult to utilize, but because of their diversity may present unusual and useful opportunities. Factors to be considered in selecting an indicator include handling safety, toxicity, potential for contamination of the tunnel, and cost

    Transonic applications of the Wake Imaging System

    Get PDF
    The extension of a rapid flow field survey method (wake imaging system) originally developed for low speed wind tunnel operation, to transonic wind tunnel applications is discussed. The advantage of the system, beside the simplicity and low cost of the data acquisition system, is that the probe position data are recorded as an optical image of the actual sensor and thus are unaffected by the inevitable deflections of the probe support. This permits traversing systems which are deliberately flexible and have unusual motions. Two transverse drive systems are described and several typical data images are given

    STOL aircraft transient ground effects. Part 1: Fundamental analytical study

    Get PDF
    The first phases of a fundamental analytical study of STOL ground effects were presented. Ground effects were studied in two dimensions to establish the importance of nonlinear effects, to examine transient aspects of ascent and descent near the ground, and to study the modelling of the jet impingement on the ground. Powered lift system effects were treated using the jet-flap analogy. The status of a three-dimensional jet-wing ground effect method was presented. It was shown, for two-dimensional unblown airfoils, that the transient effects are small and are primarily due to airfoil/freestream/ground orientation rather than to unsteady effects. The three-dimensional study showed phenomena similar to the two-dimensional results. For unblown wings, the wing/freestream/ground orientation effects were shown to be of the same order of magnitude as for unblown airfoils. This may be used to study the nonplanar, nonlinear, jet-wing ground effect

    DNase I-hypersensitive sites surround the mouse acetylcholine receptor delta-subunit gene.

    Full text link

    A Solution to the Galactic Foreground Problem for LISA

    Full text link
    Low frequency gravitational wave detectors, such as the Laser Interferometer Space Antenna (LISA), will have to contend with large foregrounds produced by millions of compact galactic binaries in our galaxy. While these galactic signals are interesting in their own right, the unresolved component can obscure other sources. The science yield for the LISA mission can be improved if the brighter and more isolated foreground sources can be identified and regressed from the data. Since the signals overlap with one another we are faced with a ``cocktail party'' problem of picking out individual conversations in a crowded room. Here we present and implement an end-to-end solution to the galactic foreground problem that is able to resolve tens of thousands of sources from across the LISA band. Our algorithm employs a variant of the Markov Chain Monte Carlo (MCMC) method, which we call the Blocked Annealed Metropolis-Hastings (BAM) algorithm. Following a description of the algorithm and its implementation, we give several examples ranging from searches for a single source to searches for hundreds of overlapping sources. Our examples include data sets from the first round of Mock LISA Data Challenges.Comment: 19 pages, 27 figure

    LISA Data Analysis using MCMC methods

    Full text link
    The Laser Interferometer Space Antenna (LISA) is expected to simultaneously detect many thousands of low frequency gravitational wave signals. This presents a data analysis challenge that is very different to the one encountered in ground based gravitational wave astronomy. LISA data analysis requires the identification of individual signals from a data stream containing an unknown number of overlapping signals. Because of the signal overlaps, a global fit to all the signals has to be performed in order to avoid biasing the solution. However, performing such a global fit requires the exploration of an enormous parameter space with a dimension upwards of 50,000. Markov Chain Monte Carlo (MCMC) methods offer a very promising solution to the LISA data analysis problem. MCMC algorithms are able to efficiently explore large parameter spaces, simultaneously providing parameter estimates, error analyses and even model selection. Here we present the first application of MCMC methods to simulated LISA data and demonstrate the great potential of the MCMC approach. Our implementation uses a generalized F-statistic to evaluate the likelihoods, and simulated annealing to speed convergence of the Markov chains. As a final step we super-cool the chains to extract maximum likelihood estimates, and estimates of the Bayes factors for competing models. We find that the MCMC approach is able to correctly identify the number of signals present, extract the source parameters, and return error estimates consistent with Fisher information matrix predictions.Comment: 14 pages, 7 figure

    Studying stellar binary systems with the Laser Interferometer Space Antenna using Delayed Rejection Markov chain Monte Carlo methods

    Full text link
    Bayesian analysis of LISA data sets based on Markov chain Monte Carlo methods has been shown to be a challenging problem, in part due to the complicated structure of the likelihood function consisting of several isolated local maxima that dramatically reduces the efficiency of the sampling techniques. Here we introduce a new fully Markovian algorithm, a Delayed Rejection Metropolis-Hastings Markov chain Monte Carlo method, to efficiently explore these kind of structures and we demonstrate its performance on selected LISA data sets containing a known number of stellar-mass binary signals embedded in Gaussian stationary noise.Comment: 12 pages, 4 figures, accepted in CQG (GWDAW-13 proceedings
    • …
    corecore