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1.0 SUMKARY

A fundamental analytical study of STOL ground effects is presented.

Ground effects are studied in two dimensions to establish the importance of

nonlinear effects, to examine transient aspects of ascent and descent near

the ground, and to study the modelling of jet impingement on the ground.

Powered lift system effects are treated using the jet-flap analogy. The

development status of a three-dimensional jet-wing ground effect method is

presented, including the description of a recently developed nonplanar,

nonlinear lifting surface theory for the analysis of unblown wings in free

air or in ground effect. Recommendations for future three-dimensional

analytical developments are made.

The two-dimensional study has established the importance of nonlinear

effects in ground proximity and has provided a simple means of modelling jet

impingement. The study of transient phenomena in ground effect has shown for

two-dimensional unblown airfoils that the transient effects are small and

are primarily due to airfoil/freestream/ground orientation rather than to

unsteady effects. Because of the limits of existing methodology, it is

impossible at this time to fully assess analytically the importance of ground

effect transients for STOL aircraft in relation tc performance, stability and

control, and handling qualities.

The three-dimensional study of ground effects has shoran phenomena

similar to that shown in two dimensions. For unblowa wings the wing/free-

stream/ground orientation effects have been shown to be of the same order of

magnitude as for unblown airfoils, but no assessment of unsteady or jet

effects can be made within the limits of existing methods. This study has

provided the basis for the future development of a nonplanar, nonlinear jet-

wing ground effect method.



2.0 INTRODUCTION

The analytic prediction of the effects of ground proximity on aircraft

aerodynamics has been a subject of study for many years. While reasonabl;

good solutions have been obtained for simple wings, the ground influence on

wings with complex high lift systems has been difficult to predict accurately.

For powered lift STOL aircraft the problem is even more difficult because of

the very high lift coefficients required and the presence of a high velocity

jet efflux which may impinge on the ground. In addition, there has been some

concern that ascent or descent in ground proximity may introduce transients

that can change the ground effect, especially for the high rates of ascent

and descent typical of STOL aircraft.

Much of the previous analytical work on STOL ground effects has

examined the problem in two dimensions. Lissaman (references l and 2) has

approached the problem using linear theory while Huggett (reference 3) has

used an experimental approach to establish prediction methods, particularly

with regard to jet impingement. Halsey (reference 4) has solved the jet-

flapped airfoil ground effect problem using a nonlinear finite element

approach. Reference S has provided a linearized solution to the three-

dimensional jet-wing ground effect problem. Although the method uses a cor-

rection term to approximately account for nonlinear effects, comparisons of

its predictions with experimental data for STOL configurationsshow poor

correlation.

The work presented here answers many fundamental questions regarding

the nature of ground effects, both for conventional and STOL aircraft; and it

establishes a basic framework from which prediction methods can be developed.

Two-dimensional analytical methods have been used extensively to assess the

importance of nonlinear effects, jet flap effects, and transients that may

arise as a result of ascent or descent. Basic ground effect phenomena in

three dimensions have also been studied. A nonllaear, nonlinear method for

unblown wings has been developed, and recommendations for the development of

a three-dimensional jet-wing ground effect method have been made. In the

following sections each of these is discussed in detail.

a
i
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3.0 TWO--DIMENSIONAL ANALYTICAL STUDY

An extensive analysis of the g:our.d effect problem has been made using

existing two-dimensional analytical techniques previously developed at the

Douglas Aircraft Company. Although there are many valid questions concerning

the extent of applicability of tiro-dimensional techniques to study a highly

complex three-dimensional flow, experience has shown that basic phenomena and

trends can be usefully studied two-dimensionally; however, absolute magnitudes

must be obtained from the three-dimensional solution. The methods employed

in the present study are potential flona techniques which have been in use at

Douglas for some time. The Jet Flap Potential Flow Method (reference 4)

solves the nonlinear airfoil/thin jet problem using an iterative technique

to locate the jet sheet. The airfoil (either thin or thick) and the thin jet

sheet are represented by distributed vorticity, and the problem is treated

by solving the equations specifying no flow normal to the airfoil surfaces

and a balance between jet centrifugal force and the pressure jump across the

jet. The iteration continues until there is also no flow normal to the jet

sheet. It should be noted that implicit in the use of this method (and other

thin: jet methods) is the assumption that the jet efflux can be adequately

modelled by an infinitesimally thin jet sheet of infinite velocity but finite

momentum. The jet-flap analogy, as it is known, has been shown to be a good

model for both the internally ducted and the externally blown jet flap, but

its applicability to upper surface blowing has not been established. Results

computed by the Jet Flap Potential Flow Method have compared favorably with

those obtained by other theoretical methods and with two-dimensional experi-

mental data. Present capabilities of the method include the analysis of

single- and multi-element airfoils with a thin jet ground effect (modelled'	 9
by an image airfoil technique), and non-uniform onset flows. Approximate

techniques are employed to model boundary layers and jet entrainment. There

presently is no method capable of analyzing a jet-flapped airfoil in an

arbitrary transient motion, such as the flight into or out of ground effect.

However, there does exist such a capability for unblown airfoils based on

the Douglas Two-Dimensional Neumann Method (reference 6). These so-called

unsteady Neur-,-ta techniques (references 7, 8, and 9) represent the airfoil by

surface source distributions and internal vorticity, and they solve the



unsteady problem by a time-step technique. Changes in lift with time require

the shedding of vorticity into the wake to satisfy the Helmholtz conservation

of vorticity law. The disposition of the vortex wake must be determined by

an iterative technique. The ground plane is represented by an image airfoil

technique.

Using the two methods described above as well as some simpler linearized

methods, the two-dimensional ground effect problem has been studied, both for

conventional and jet-flapped airfoils. Unsteady effects for conventional

airfoils have been examined, and an approximate technique for modelling

ascent or descent for airfoils with jet flaps has been developed. The

details of this study are presented in the following sections.

3.1 Im2ortance of Nonlinear Effects for Airfoils in Ground Proximity

Many practical airfoil analysis techniques have employed linearization

assumptions to simplify the mathematical formulation and to reduce arithmetic

labor. Fortunately for most problems such an approximation is quite valid,

owing to the small angles and nearly planar nature of most airfoils (and wings

in three-dimensions). However the ground effect problem does not fall into

this category. The ground plane exerts a considerable influence on the flow

field. Unlike the airfoil--alone problem, the induced flow due to the ground

has a component tangential to the airfoil as well as normal to it. Expressed

mathematically, the no-normal flow boundary condition,

tan (s+a) = v
U +uca

cannot be linearized in the standard fashion because "u" induced by the ground

plane is not necessarily small. To further aggravate the problem, most flight

in ground proximity involves the use of high lift devices which makes lineari-

zation of the tangent function a poor approximation.

The importance of these nonlinearities was recognized at Douglas

several years ago while studying the ground effect problem under AFFDL Con-

tract F33615-71-C-1861. At that time a linearized three-dimensional jet-

wing ground effect method based on the Douglas EVD method (reference 10) was

(1)

4
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being developed, but the importance of nonlinear effects was quickly

recognized and a "u" perturbation correction term was included to partially

account for the nonlinear ground influence (reference 5). In conjunction with

that AFFAL contract, a study of the magnitude of nonlinear effects for con-

ventional airfoils in ground proximity was made. Since at that time the jet

iteration technique of the Jet Flap Potential flow Method was no% completely

operational, a similar study could not be made for jet-flapped airfoils. This

study has been made under the present contract, and the results of both are

presented herein. This study assumes that the jet does not impinge on the

ground. Jet impingement is discussed in Section 3.3.

A measure of the importance of nonlinear effects for conventional high

lift airfoils represented by hinged flat plates in ground effect has been

obtained using the linear and nonlinear mathematical models illustrated in

figure 1. The linear theory represents the airfoil by a continuous distri-

bution of vorticity [y(x)] placed on a plate at a constant height (h) above

the ground. The nonlinear theory uses a similar vortex distribution, but the

vorticity [y(s)] is placed on the actual plate whose leading edge is at the

height h above the ground. Presented in figure 2 is the ratio of lift

computed by the linear theory to that predicted by the nonlinear theory for

various hinged flat plate airfoils. It is shown that linear theory can over-

predict lift by as much as 50 percent of the nonlinear theory prediction for

small values of h, and, as would be expected, nonlinear effects become more

important with an increase in angle of attack and flap angle.

Typical effects of ground proximity on lift, calculated by nonlinear

theory, for unblown hinged flat plate airfoils are presented. in figure 3.

These data show a lift increase due to the effect of ground proximity for the

unflapped airfoil but a lift decrease for flapped airfoils. A detailed study

of this problem indicates that three phenomena contribute to flow field

changes as the ground is approached. Consider the ground to be simulated by

placing an "image" airfoil at a distance 2h below the "real" airfoil. As

shown schematically in figure 4, the image airfoil induces predominantly an up-

wash on the real airfoil for forward (unflapped) loading but predominantly down-

wash for aft (flapped) loading. Thus this first effect would tend to increase

lift in ground effect for a flat plate airfoil but would tend to decrease lift

5
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for a flapped airfoil, depending of course on the relative magnitude of the

forward and aft loading. The second phenomena which contributes to ground

effect is the perturbation velocity opposite to the freestream direction

induced by the image airfoil. For positive lift, this effect of decreased

f
	 dynamic pressure always reduces lift. The third effect is important only

for large flap deflections. When a portion of the airfoil surface is highly

deflected, downwash is no longer the predominant term in the boundary condi-

tion. Instead, the "u" perturbation velocity becomes of comparable magnitude.

Since in ground proximity u. induced by the image is generally opposite to

the freestream, to satisfy equation 1 it follows that v must be smaller.

For this condition to be satisfied lift must decrease.

The three phenomena disct:ssed above cannot in reality be evaluated to

assess the influence of ground proximity. The ultimate effect of ground

proximity on lift is dependent on the relative importance of each phenomenon

and can only be evaluated using a sophisticated analysis method which solves

the complete ground effect problem. However, looking at the problem in this

fundamental manner has led to further understanding of the ground effect

problem.

A similar ground effect analysis has been conducted for hinged flat

plate airfoils with jet flaps. Figure 5 presents a measure of the nonlineaii-

ties of the solution and shows that in terms of lift,nonlinear effects are

still significant but are actually smaller than for unblown airfoils. Ion--

linear effects tend to decrease with increasing jet momentum coefficient.

This trend seems to contradict the data obtained for unblown airfoils where

nonlinear effects became more important with increasing lift (see figure 2).

However, for a jet-flapped airfoil in ground effect, the presence of the

ground tends to restrict the downward trajectory of the jet, resulting in a

flatter jet trajectory. Since linearized jet-flap theory assumes a flat jet,

the effect of the ground in flattening our- the jet may account for a portion

of the reduction in nonlinear effects.

Typical effects on lift of ground proximity for jet-flapped ai_rfi

is shown in figure G. These data are very similar to the unblown airfc

data (figure 3) and show a generally adverse effect of ground proxi.miti,

i 10
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A jet flap tends to aft-load the airfoil, so these results are consistent

with those of the aft-loaded unblown airfoils previously discussed. It

should be noted that the data of figure b do not include the effects of jet

impingement on the ground, which should further reduce lift. ,let impinge-

ment is discussed in Section 3.3.

In addition to nonlinear effects, the effects of airfoil thickness in

relation to the ground effect problem have been examined. Effects of wing

thickness are not considered in most lifiting surface theories because

experience has shown the effects to be quite small. For an airfoil in

free air, theoretical analyses show that thickness generally increases lift.

The factor (1 + t/c) is most often applied to approximate the effect. In

practice, however, effects of the boundary layer tend to cancel, thickness

effects, so the thin wing result usuUly predicts lift very well, in the

absence of any flow separation.

However, in ground proximity the effect of thickness is considerably

different. Although the absolute magnitude of the lift an a thick airfoil

in ground proximity may still be larger than for a corresponding thin airfoil,

the ground effect (as a percentage of free air lift) is generally less

favorable (or more adverse) for the thick airfoil than for the thin airfoil.

This is shown in figure 7 for an NAGA 0012 airfoil at various angles of

attack and flap deflections. For an airfoil height of one chord the reduction

in lift (i.e., cQ/ck.) due to thickness is as large as three percent of the

free air lift.

The thickness effect can be simply understood by considering the

representation of the problem as that of two sources in a uniform flow

(reference 18, page 210)_ The source (oar a distribution of sources) can be

used to model a thick body (with no circulation), and an image source can

be used to model the ground. It is a well-known potential flow solution that

two such sources will have a mutually attractive force between them, which

can be interpreted as a reduction in lift.

13
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3.2 Analytical Study of Ground Effect Transients

As an aircraft takes-off or lands, its attitude and distance relative

to the ground are constantly changing. Because of the high rates of ascent

and descent near the ground typical, of STOP, aircraft, there has been some

concern that the effects of ground proximity will lag the motion. In other

words, it is possible that aircraft disposition relative to the ground will

change so rapidly that the ground effects will not quickly approach their

steady state value.. In addition, during ascent or descent the freestream

flow is not parallel to the ground plane, as it is in the wind tunnel or in

previous analytical methods; but rather the freestream is inclined to the

ground by the flight path angle. Consequently the aircraft attitude angle is

8 = a + Y
	

(2)

For the large flight path angles typical_ of STOL aircraft, these attitude

effects may also effect the level of ground interference.

Using the previously discussed analytical methods, a two-dimensional

assessment of transient ground effects has been made. The problem has been

addressed from three Levels of sophistication. The most approximate method

neglects completely any aspects of ascent or descent and instead assumes

flight at a constant height above the ground. This technique, called the

"steady state method," is illustrated in figure 8a and is representative of

current wind tunnel and analytical ground effect modelling. An improvement

in modelling the ground effect problem is shown in figure 8b. Known as the

"quasi-steady method," this technique models ascent or descent insofar as

airfoil attitude relative to the ground is concerned but does not include any

unsteady aspects of the flow. The complete transient modelling of the pro-

blem, known as the "unsteady" or "dynamic" method, uses essentially the same

geometric model as shown in figure 8b but also takes into account the history

of the motion. That is, as the airfoil ascends, descends, or changes attitude

in ground proximity, changes in lift result in vorticity being shed in the

wake. This affects the lift at all future times. only unblown airfoils can

presently be analyzed using the unsteady method.

An extensive analysis has been conducted to assess the three types of

ground effect solutions described above. Simple NACA 0012 airfoils, with

15
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and without flaps, have been analyzed to assess the effects of angle of attack,

flap deflection, and descent (or ascent) angle on lift in ground effect. These

data are presented in figures 9, 10, and 11, respectively. Flap deflections

and descent angles typical of STOL transport aircraft have been used. From

these figures, it can be seen that unsteady effects are rather small but that

the effects of airfoil orientation relative to the ground are relatively

large. According to these data the so -called lag in ground effects that has

been observed experimentally (reference 11) may actually be due primarily to

orientation effects. Figure 11 shows that this apparent lag increases with

increasing descent angle. Similar effects have been calculated for pitching

moment.

It is not possible at this time to evaluate fully the transient problem

for jet--flapped airfoils, but a comparison of the steady -state and quasi-

steady solutions for jet- -flapped airfoils has been made to assess the

importance of orientation effects. These results are presented in figure 12

for a flat plate airfoil with deflected jet and for a hinged flat plate

airfoil with jet. These data show a considerably larger orientation effect

than for unblown airfoils, consistent with the higher level of lift. It is

unknown what effect transients would have, but it can be speculated that the

flexibility of the jet sheet would lead to larger lags than calculated for

unblown airfoils.

A two--dimensional analysis of a jet-flapped airfoil representative of

the jet-wing used in the only known transient ground effect test (reference 11)

has been made using the steady state and quasi-steady techniques in the Jet

Flap Potential Flow Method. The wing tested in reference 11 was of rectangu-

lar planform of aspect ratio 6 and had a NACA 16-012 airfoil section with a

ten percent chord flap deflected 60 degrees and a full span jet of strength

cp = 3.5. The test was made over a ramp inclined ten degrees and also over

a flat ground. The two-dimensional analysis was made using a thin airfoil

with a ten percent chord flap deflected 60 degrees and a j et of strength

cp = 3.5.

The analytical results and experimental data are presented in figure 13.

l
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Before these results are compared, however, a number of comments concerning

the experimental data must be made. First, the data of reference 11 are not

consistent. The steady state data presented in figure 7 of that report do

not agree with the steady state data presented in figure 9. These two sets

of "steady state" data are shown in figure 13. In addition, the data obtained

over the ramp ground board may be subject to large errors due to blockage

effects of the tracked carriage s as indicated in the reference.

The results of the two-dimensional study are compared with these

experimental data in figure 13. The analytical results are not complete

because the solution would not converge at the closest ground height, 0.5

chords, Nevertheless, the solution shows the saute general character as the

test data, but the magnitudes of the Ch difference between the steady state

and dynamic (or quasi-steady) cases do not agree. The analytical results

show a fairly constant Cy difference (at a given h/c) on the order of 5%

to 6%, while the experimental CL difference is as much as approximately 40%

of the free air value.

It is impossible to reach any firm conclusions based on this comparison

because the theoretical analysis is limited by two-dimensional and quasi-

steady assumptions. However, based on the two-dimensional unblowr airfoil

studies, it does not seem apparent that unsteady effects are causing the

differences, although unsteady effects on the jet sheet are unknown. It is

unlikely that three-dimensional unsteady effects are responsible for the

discrepancy. A comparison of the work of Wagner (reference 12) with that of

,zones (reference 13) shows that three-dimensional effects tend to decrease

the time of response of lift to a sudden change in angle of attack relative

to a two-dimensional airfoil.. The large measured lift lag (reference 11)

could be caused by a delay in the onset of jet impingement in the descending

flight case. Or it is possible that carriage blockage correction errors are

prejudicing the data. An additional item of concern about these experimer!2al

data is the large difference between wind tunnel results (steady state) and

moving model results (figure 9 of reference 11). This difference may be due

to boundary layer buildup on the wind tunnel ground board or it may be due

to poor dynamic characteristics of the balance system on the moving model
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carriage. Additional transient ground effect test data would certainly help

to clear up some of these questions. A test program of the type studied

under this contract (see Part II) would resolve many of the problems that

are beyond the capability of present and near-term future analytical methods.

3.3 ImQingement of the Jet Sheet on the Ground

In addition to the formidable problems encountered in predicting ground

effects for conventional high lift wings, powered lift systems have the

problem of possible impingement of the jet sheet on the ground. A two-

dimensional study of jet impingement has been made using existing anaytical

methods in an attempt to eimply model the problem. Questions which must be

answered include: For a particular set of conditions (i.e., a, h/c, c p , SJ)

does impingement occur or not? Can the lift and pressure distribution be

calculated when impingement does occur? And can the limiting lift (i.e., the

maximum pressure lift which cannot be increased by more blowing) be predicted.?.

A number of investigators have previously studied the jet impingement

problem. Huggett (reference 3) has studied the problem experimentally in

two-dimensions and has used a simple mathematical model to predict the

limiting lift. Lissaman has also studied the problem using a linearized

analytical approach (reference 1).

The Douglas Jet Flap Potential Flow Method (reference 4) is the

technique which has been used for impingement modelling in this study.

Although i.mpi.ngment cannot be treated as a potential flow problem, it was

felt that the relatively simple jet model in this method could be used at

least to estimate the impingement point. Using the semi--infinite thin jet

capability of the computer program, several attempts were made to force the

jet through the ground so that it could be truncated at the impingement

point. Unfortunately the solution would not converge, and in most cases the

jet trajectory extended above and below the ground plane in successive

iterations.

A reasonable means of predicting impingement was found, howevex, by

using a finite length jet in place of an infinite jet for those cases where
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the infinite jet solution would not converge. The procedure requires some

trial and error, The jet is truncated to some appropriate length, such as

the straight line distance from the airfoil trailing edge to the ground

along the initial jet direction. The problem is solved again, and if the

resulting truncated jet trajectory curves nearly parallel to the ground,

impingement is unlikely. However, if the resulting trajectory is "aimed"

downward at a significant angle, then impingement is likely. There will be

some cases where impingement may or may not occur. It may require several

guesses of the truncated jet length until the jet trajectory comes close

enough to the ground for a decision to be made.

An example of the procedure is shown in figure 14 for an elliptic air-

foil at zero angle of attack with a 60 degree jet. Clearly there is no

impingement for cp = 0.5 and there is impingement for c u = 1:.5 and 2.6.

It is uncertain what happens at cp = 1.0. It is important to note that jet

truncation does not seriously affect the solution. For the case of no

impingement in figure 14, the lift is only three percent less than for the

infinite jet solution.

A comparison of lift coefficients between the present jet impingement

method calculation and experimental data for a two-dimensional jet-flapped

airfoil (reference 3) is shown in figure 15 as a function of jet momentum

coefficient. The theoretical results have been computed with and without

jet entrainment. At low cp , where there is no impingement, the agreement is

good. At the higher cp values, however, theory overpredicts lift. A

possible explanation for this overprediction can be obtained by examining

experimental and theoretical pressure distributions for non-impinged and

impinged cases (figure 16). It is seen that a large loss in lift . on the aft

Lower portion of the airfoil resulted from impingement but that this loss

was not predicted theoretically. It is speculated that this loss in lift

results from a trapped vortex in the cavity formed by the airfoil, jet, and

ground. Flow visualization studies have confirmed the existence of such a
	

i

vortex. Note that the experimental data show a leading edge bubble for both

the non-impinged and impinged cases, which is not accounted for in the

theoretical model.
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The limiting lift is computed using the present technique by replacing

the jet sheet by a rigid plate extending from the airfoil trailing edge to

the ground at the initial jet deflection angle. This effectively represents

a jet of infinite strength and hence should adequately predict the maximum

attainable pressure lift. Figure 17 compares the results of this analysis

with experiment (reference 3) and shows reasonably good correlation.
ii

The technique used here to study impingement provides only a crude

representation of the flow. In reality the jet is thick, and when impinge-

ment occurs the jet splits and flows both upstream and downstream along the

ground. As evidenced by the pressure plots (figure 16), viscous effects are

F.
	 important underneath the airfoil. In three dimensions the problem is further

r	

complicated by the ability of the jet to spread spanwise and by "spanwise

venting" of the flow beneath the wing.

a.

i
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4.0 THREE-DIMENSIONAL ANALYTICAL. STUDY

3

	

	 There currently is no analytical method capable of accurately predicting

the influence of ground proximity on the aerodynamic characteristics of jet-

wings. Previous work at Douglas included the development of a lineariaed

jet-wing lifting surface theory (reference 10) with a ground effect capability
(reference 5), but it has been shown that such an approach is inadequate

because of the extreme nonlin.eaxity of the problem. Nonlinear effects may
be even more significant in three dimensions than in two dimensions, as dis-
cussed in Section 3.1, because sweep, taper, and spanwise variations in
geometry and blowing characteristics will, add further nonlinear and nonlinear

effects. Impingement of the ,jet sheet on the ground further complicates the

problem. Transient effects in ground proximity, if important, would add

further difficulty to obtaining a reliable three-dimensional solution.

In response to the lack of a reliable jet-wing ground effect method,
Douglas, under its Independent Research and Development (IRAD) program, has

been working on methods to provide this capability. Two approaches, in terms

of the singularity distribution employed, are being pursued. The first is a

nonpinnar, nonlinear lifting surface theory using vortex distributions to

represent the surfaces and a thin jet sheet model. The second approach uses

a doublet singularity distribution to represent solid bodies and jet bound-

aries. When cpmpleted, this method would include a three-dimensional jet that

correctly models the effects of finite mass flow, distortion and deflection,

and inlet flow. While limited experience has been obtained with this jet

model (reference 14), the method is stall in the early stages of development

and considerable additional effort is required before an operational program

will be available.

The completion of the nonpiaear, nonlinear lifting surface method,

however, was felt to be much closer at hand, and its development has been

accelerated to provide the needed capability. Several fundamental analytical

stepping--stones have been developed in conjunction with the present contract

work. In addition, considerable progress towards the desired analytical

method has been made under a McDonnell Douglas Independent Research and
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Development (IRAD) project. In fact, as a result of this work a fully

nonplanar, nonlinear lifting surface theory for unblown wings, including

ground effect, has been developed. The following sections describe the

development of this method, demonstrate use of the present method for the

analysis of three--dimensional ground effects, and define future tasks required

to add the powered lift capability.

4.1 Development of a Three-Dimensional Ground Effect Method

Development of a fully nonlinear, nonplanar lifting surface theory was

initiated as a 1974 McDonnell Douglas IRAD project. The term "lifting sur-

face theory" is used to indicate that wing thickness effects are neglected.

Considerable effort was devoted to developing a suitable singularity distri-

bution to model the lifting surface. Factors such as accuracy, numerical

behavior, and computing requirements were considered.

Nonplanar vortex distributions have been developed to model the wing,

based on the planar Elementary Vortex Distributions (EVDs) developed at

Douglas in 1970 .(reference 10). Unlike their planar counterparts, however,

the nonplanar singularities place appropriate vorticity distributions on the

actual camber surface, which is required for the nonlinear solution, rather

than on some mean plane. Three nonplanar vortex distributions have been

developed, as shown in figure 18. To model the loading at the leading edge of

a wing, an inverse-square--root distribution of vorticity is used ('y - 1/_) .
For other portions of the wing surface (or the jet sheet), overlapping

triangular vorticity distributions, which add to form simple linear distri-

butions, have been derived. These triangular vortex distributions are placed

on a piecewise broken camberline, as shown in figure 19. A third vortex

distribution, which decays as 1/x 2 , has been derived for future use to

model the loading on a semi-infinite jet sheet.

The nonplanar vortex distributions are implemented by dividing the

camber surface into an array of finite elements. On a point within each

element the no-normal flow boundary condition,

Vi 0
(3)

f

32



4--,, 3//1R EGsC:E
j/G,eT-1c1rY 0/srA-/acfrAav

TP/4AAGl1^
VOW 7-/C/rY a/erelffUrKJN

r, (Id --f,
re (f:)-" Sr

r, (f-)

.400
4►

I?	 _I	 J	 I	 I	 !	 I_

rife

JET I,VFiNirY
u^^riC/TY d/srpierrricw

—,. S

Figure 18. Illustration of Nonplanar Elementary Vortex Distributions.
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is imposed, where the subscript denotes the i th element and ni is the

unit normal. The velocity Vi is composed of components of the freestream

flow and of velocities induced by each vortex distribution on the wing sur-

face. If yj is the strength of the vorticity on the j th element, the

velocity on the i th element is then

	

Vi = V^ +
	 Y.	 (4.)

where the summation is taken over all the elements. Determination of Aij,

known as the "normal--wash influence coefficient," is the crux of the problem.

Iij represents the velocity vector induced by the j th element of unit

vortex strength at the i th boundary condition point. It is computed from

the Biot-Savart Law. Using a local coordinate system (x,y,z) with the

chosen vortex distribution in the xy-plane, the Biot-Savart Law can be

expressed as

X

	

f
ff,(^,)	 dg'dndg	 (5)

x y _^,	 ^1-g)2+(y-n) + z2

where t, n, g' are integration dummy variables. The function y(C,n) is

the chosen vorticity distribution on a small element of the camber surface.

In the present mathematical model the vorticity functions are assumed

to be constant in the y-direction (spanwise) but have the desired behavior

in the x direction (chordwise). Thus the form of y(C,n) becomes

	

YU,n) = Y 	 = Y g 	 (6)

where ? is the mean vorticity strength and

g() l/ VC	 (leading edge elements)

g(O	 (other elements)

g(g) ^- 1/g2	(jet semi-infinite elements)

It should be mentioned that, because of the assumption of constant vortex

strength over the spanwise extent of an element, there is a pair of concen-

trated vortex legs extending downstream from each edge of an element. In

the present formulation these vortex legs have been "broken" to follow the

section camber line to the trailing edge and then extend downstream to
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infinity (see figure 20).	 Integration of equation (5) has been facilitated

by evaluating velocity components rather than the velocity potential. gyp. The

resulting integrals are quite lengthy and have the added complication of

singular points, which must be handled using the Mangler Principal Value

Theorem. For example, the velocity component normal to - the local xy-plane

of an arbitrary element is determined from

w(x,Y^ z) = 1 
ffy

(9,n)	
(X_

n)2—Z2	 1+.  _ (x,^) 	1 dgdn4UIII [ (Y—n) +z 7 	 (X-0 +(Y—n) + 2

- 4,a ffy 
Q ,n) [(y—n)	 I(x-9} +(Y-T0 +z J d do 	 {7)

The numerical behavior and computer resource.requi.rements of these

nonplanar vortex distribution functions have been thoroughly analyzed and

detailed comparisons with simple concentrated horseshoe vortices have been

made, both on and off the plane of the singularity. One such comparison,

for a triangular vortex distribution, is shown in figure 21. As would be

expected, far from the element, where details of the vortex distribution are

unimportant, the simple and complex functions agree well. However, close to

the inducing element, in the region of most importance to the solution, there

is a significantly different character to the induced velocity distribution.

The computing requirements of the nonplanar vortex distribution functions,

while greater than for the simple concentrated vortex, are still within an

acceptable limit for use within a frequently used design-program. Simpli-

cati.ons to the functions for far field points have been included in the

computer program to reduce computation requirements.

j

f
g

t

j

f

The finite element lifting surface theory problem is solved by

combining equations 3 and 4 for the vortex strengths:

Eli . • ni y, - VCO • ni	 (8)
3	 J

Equation (8) is solved by matrix techniques on a digital computer. Once the

yj values are known, the pressure jump coefficients dcp (x,y,z) are

computed from a form of the Kutta-Joukowski law,

Ac  (x ,Y, z ) =- 2 (V •t) y (X,Ye z )	 (9)
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E
where V comes from equation (4) and t is the unit tangent vector.
Aerodynamic forces and moments are simply calculated by suitable integrations

of Ac  over the surface. However, calculating induced drag requires not

only a pressure integration but also a computation of leading edge suction.

A leading edge suction term represents the chordwise force on the infinites-

imally thin leading edge. The force is finite because the leading edge

loading is singular. Because of the inverse-square-root singular vortex

distribution employed in the present method, leading edge suction can be

computed directly from the vortex strength solution.

The method described above, known as the Nonplanar Lifting Systems

Program (NPLSP), has recently been expanded to include the effects of ground

proximity. A standard image wing technique has been used, which effectively

forms streamlines coincident with the ground plane. In order to consider

effects of ascent or descent, a rotated freestream capability, identical

to the "quasi-steady" technique discussed in Section 3.2, has been included.

To facilitate its use, the computer program accepts inputs for flight path

angle (y) and attitude angle (9) and computes angle of attack from

equation (2). In the three-dimensional method the ground clearance its

measured from the apex (leading edge at the centerline) of the wing.

An example of the validity of the Nonplanar Lifting Systems Program is

shown in figure 22. Plotted are the lift, drag, and pitching moment coeffi-

cients for a simple aspect ratio 4 rectangular wing with an NAGA 641A412

section, including experimental data from reference 15. Note that the pre-

dicted drag polar includes a zero lift friction drag estimate. Perhaps the

most interesting feature of this comparison is the predicted nonlinearities

of lift and pitching moment, which agree with experiment up to the onset of

separated flow.

The validity of the ground effect capability has been ascertained

using both experimental data and the Douglas Neumann Potential Flow Method

(reference 16). The Neumann method not only considers the nonlinear aspects

of the problem but also the effects of wing thickness. Figure 23 shows the

ground effect on lift for an aspect ratio 6 rectangular wing computed by the
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Neumann method and by the present method. The small difference shown is

undoubtedly due to the effects of wing thickness (t/c = .12) which tends

to reduce lift in ground effect, as previously discussed.

Another verification of the ground effect capability of the present

method is shown in figure 24, which includes e^merimental data from reference

17 for an aspect ratio 4 rectangular wing. The large thickness of the model

(t/c. = .22) again accounts for the small discrepancy shown.

Use of the present method to estimate the ground effect on a realistic

transport aircraft configuration is shown in figure 25. The predicted

reduction in angle of attack for a given lift coefficient agrees well with the

plotted wind tunnel data.

4.2 Study of Three-Dimensional Ground Effects for Unbloxffi Wings

The Douglas Nonplanar Lifting Systems Program, described in Section 4.1,

has been used to study the nature of three-dimensional ground effect phenom-

ena, particularly with regard to the influence of ascent and descent on lift

and induced drag. Ascent and descent are modelled in the present method by

suitable rotations of the freestream and wing. This procedure (i.e., quasi--

steady technique) accounts for orientation effects but does not consider the

unsteady aspects (i.e., the history) of the motion.

Figure 26 presents results of the ground effect analysis of an aspect

ratio 7 rectangular wing, both clean and with a large full span flap. A

larger than practical flight path angle (10 degrees) has been used to

establish limits to the effects of ascent and descent. From these plots it

can be seen that orientation effects can change the predicted ground effect

by up to three percent of the free air lift and by up to ten percent of the

free air induced drag. These data, it should be remembered, are for unblown

wings, although the large flap provided lift coefficients typical of STOL

aircraft.

4.3 Further Development of a Three-Dimensional Ground Effect Method

The method described in the preceding section provides the capability
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to analyze conventional wings in ground proximity, including nonplanar and

nonlinear effects. This work resulted in the development of the nonplanar

vortex distribution influence functions which have been shown to be quite

suitable in terms of numerical behavior and computer utilization. Use of

these influence functions in a nonplanar lifting surface theory has been

successfully demonstrated.

Further development of the present method to provide the needed jet-

wing ground effect capability will require the addition of a thin jet sheet

to the present mathematical model. The approach recommended is the same as

that used in the method of reference 4 and described in Section 3.1. That

approach models the jet sheet by a distribution of vorticity extending down-

stream to infinity. The jet shape will be determined through an iterative

procedure by satisfying the dynamic boundary condition (pressure-curvature

relationship) and modifying the jet trajectory until the no-normal-flow

condition is also satisfied. It is unknown at this time whether the con-

vergence characteristics of a three-dimensional solution will be as good as

the two-dimensional method (typically 3 to 5 iterations required), but with

the added complexity of spanwise variation of jet parameters it is likely

that more iterations will be required. Because of the relatively large com-

puter costs of a three-dimensional method, it will be desirable to explore

simplications to the method to speed the iteration process. Possible simpli-

cations include changes to the normal-wash influence functions and to matrix

solution techniques. Three-dimensional impingement modelling could be based

on a scheme similar to that presented in Section 2.3, although it is likely

that only a qualitative solution could be obtained with the approximate

approach. Thick jet effects are considered to be a much more difficult

analysis task.

Matrix partitioning had been considered to be a highly desirable

timesaving technique because it allows the constant portion of a matrix to

be solved only once while the changing portion is solved in each iteration.

The advantage to be gained in using partitioning depends on the number of

constant matrix elements relative to the number of changing elements and also

on the number of iterations required. Initially it was thought that the

wing-on-wing portion of the normal-wash matrix did not change with each
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iteration, but it has since been realized that this is true only for wing

sections which have no jet sheet. Influence functions for elements on a

jet-flapped wing section do change in the iteration process because of the

change in position of trailing vorticity as the jet sheet moves. Thus the

potential increase in computing efficiency by using a partitioning technique

would not be as large as originally anticipated. However, partitioning still

may prove useful, especially when a significant portion of the wing is

unblowa (such as upper surface blown configurations), since then a large

portion of the matrix could be preserved. It is anticipated that matrix

partitioning should be considered, but only after the jet-wing ground effect

capability is developed.

a
i
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5.0 CONCLUSIONS AND RECOMNDATIONS

This analytical study of STOL ground effects has explored the problem

two-dimensionally in considerable detail ane has established the necessary

theoretical basis from which a three-dimensional jet-wing ground effect

method can be developed. It has been shown that the ground effect problem

is highly nonlinear and that jet-flaapad airfoils in ground effect generally

show a larger loss in lift than conventional airfoils, especially when the

effects of jet/ground impingement are considered. Ground effect transients

have been studied to the limits of the existing methodology, and it has been

shown for two-dimensional unblown airfoils that nearly all of the transient

effect is a consequence of airfoil/freestream/ground orientation rather than

of unsteady effects. Orientation effects for blown airfoils have been shown

to be larger than for unblown airfoils. Study of unsteady effects for blown

airfoils is beyond the capabilities of existing methodology, but it can be

speculated that those effects may be larger than for unblown airfoils because

of changes in the jet trajectory. For three-dimensional wings, orientation

effects have been shown to be of the same order of magnitude as for unblown

airfoils. Based on fundamental theoretical unsteady methods, it is likely

that unsteady effects will be of less importance in three-dimensions than in

two-dimensions.

Because of the limits of existing methodology, it is impossible at this

time to assess analytically the importance of ground effect transients for

STOL aircraft in relation to performance, stability and control., or handling

qualities. The results of the two-dimensional study presented here, however,

do show the effects to be small and to be primarily a result of airfoil

orientation rather than of unsteady motion. Results obtained from this study

do not indicate any profound difference, in terms of ground effect transients,

between unblown and clown airfoils. However, because of the limits of

existing methodology and serious concern about the validity of existing experi-

mental data, no firm conclusions can be drawn.

This study has shown the importance of steady state STOL ground effects

and has established the need for improved analytical. methods. The significance

F
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of transient ground effect phenomena for powered lift systems cannot be

assessed adequately within the scope of present analytical techniques,

although the quasi-steady technique developed here does show promise of

•	 simply accounting for transients. Experiment and flight test could establish

the significance of transients.

Work done in this study has established a firm theoretical framework

for the development of a jet wing ground effect method. A complete set of

nonplanar vortex distribution influence functions has been developed, and

the basic nonplanar lifting surface theory scheme has been successfully

developed for unblown wings, including a ground effect capability. Some

progress has also been made in modelling jet impingement. It is felt that

sufficient progress has been made to continue, with confidence, the develop-

ment of the nonplanar, nonlinear jet-wing ground effect method.

It is recommended that the following tasks be considered in any future

research on STOL ground effects:

Extension of the Douglas Nonplanar Lifting Systems Program to

include a thin jet sheet, both in and out of ground proximity.

Jet impingement modelling, based on the two-dimensional work done

here, should be included.

® Extension of jet-flapped airfoil techniques to include unsteady

effects.

Thick jet/wing analysis in ground proximity. This could be done

using a doublet approach or the Neumann method approach along with

existing or new thick net techniques.

An experimental program to establish the importance of ground

effect transients.

® Study of viscous effects associated with a jet-wing in ground

proximity.

i Further ground effect flight testing, both steady state and

transient, of the Buffalo augmentor wing aircraft, the yC-15,

and the XC-14 AMST prototypes.
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