2,970 research outputs found

    An exactly solvable coarse-grained model for species diversity

    Full text link
    We present novel analytical results about ecosystem species diversity that stem from a proposed coarse grained neutral model based on birth-death processes. The relevance of the problem lies in the urgency for understanding and synthesizing both theoretical results of ecological neutral theory and empirical evidence on species diversity preservation. Neutral model of biodiversity deals with ecosystems in the same trophic level where per-capita vital rates are assumed to be species-independent. Close-form analytical solutions for neutral theory are obtained within a coarse-grained model, where the only input is the species persistence time distribution. Our results pertain: the probability distribution function of the number of species in the ecosystem both in transient and stationary states; the n-points connected time correlation function; and the survival probability, definned as the distribution of time-spans to local extinction for a species randomly sampled from the community. Analytical predictions are also tested on empirical data from a estuarine fish ecosystem. We find that emerging properties of the ecosystem are very robust and do not depend on specific details of the model, with implications on biodiversity and conservation biology.Comment: 20 pages, 4 figures. To appear in Journal of Statistichal Mechanic

    Random copying in space

    Full text link
    Random copying is a simple model for population dynamics in the absence of selection, and has been applied to both biological and cultural evolution. In this work, we investigate the effect that spatial structure has on the dynamics. We focus in particular on how a measure of the diversity in the population changes over time. We show that even when the vast majority of a population's history may be well-described by a spatially-unstructured model, spatial structure may nevertheless affect the expected level of diversity seen at a local scale. We demonstrate this phenomenon explicitly by examining the random copying process on small-world networks, and use our results to comment on the use of simple random-copying models in an empirical context.Comment: 26 pages, 11 figures. Based on invited talk at AHRC CECD Conference on "Cultural Evolution in Spatially Structured Populations" at UCL, September 2010. To appear in ACS - Advances in Complex System

    L-band Microwave Remote Sensing and Land Data Assimilation Improve the Representation of Prestorm Soil Moisture Conditions for Hydrologic Forecasting

    Get PDF
    Recent advances in remote sensing and land data assimilation purport to improve the quality of antecedent soil moisture information available for operational hydrologic forecasting. We objectively validate this claim by calculating the strength of the relationship between storm-scale runoff ratio (i.e., total stream flow divided by total rainfall accumulation in depth units) and pre-storm surface soil moisture estimates from a range of surface soil moisture data products. Results demonstrate that both satellite-based, L-band microwave radiometry and the application of land data assimilation techniques have significantly improved the utility of surface soil moisture data sets for forecasting stream flow response to future rainfall events

    Exact Solution for the Time Evolution of Network Rewiring Models

    Full text link
    We consider the rewiring of a bipartite graph using a mixture of random and preferential attachment. The full mean field equations for the degree distribution and its generating function are given. The exact solution of these equations for all finite parameter values at any time is found in terms of standard functions. It is demonstrated that these solutions are an excellent fit to numerical simulations of the model. We discuss the relationship between our model and several others in the literature including examples of Urn, Backgammon, and Balls-in-Boxes models, the Watts and Strogatz rewiring problem and some models of zero range processes. Our model is also equivalent to those used in various applications including cultural transmission, family name and gene frequencies, glasses, and wealth distributions. Finally some Voter models and an example of a Minority game also show features described by our model.Comment: This version contains a few footnotes not in published Phys.Rev.E versio

    Voter Model with Time dependent Flip-rates

    Full text link
    We introduce time variation in the flip-rates of the Voter Model. This type of generalisation is relevant to models of ageing in language change, allowing the representation of changes in speakers' learning rates over their lifetime and may be applied to any other similar model in which interaction rates at the microscopic level change with time. The mean time taken to reach consensus varies in a nontrivial way with the rate of change of the flip-rates, varying between bounds given by the mean consensus times for static homogeneous (the original Voter Model) and static heterogeneous flip-rates. By considering the mean time between interactions for each agent, we derive excellent estimates of the mean consensus times and exit probabilities for any time scale of flip-rate variation. The scaling of consensus times with population size on complex networks is correctly predicted, and is as would be expected for the ordinary voter model. Heterogeneity in the initial distribution of opinions has a strong effect, considerably reducing the mean time to consensus, while increasing the probability of survival of the opinion which initially occupies the most slowly changing agents. The mean times to reach consensus for different states are very different. An opinion originally held by the fastest changing agents has a smaller chance to succeed, and takes much longer to do so than an evenly distributed opinion.Comment: 16 pages, 6 figure

    Stochasticity and evolutionary stability

    Full text link
    In stochastic dynamical systems, different concepts of stability can be obtained in different limits. A particularly interesting example is evolutionary game theory, which is traditionally based on infinite populations, where strict Nash equilibria correspond to stable fixed points that are always evolutionarily stable. However, in finite populations stochastic effects can drive the system away from strict Nash equilibria, which gives rise to a new concept for evolutionary stability. The conventional and the new stability concepts may apparently contradict each other leading to conflicting predictions in large yet finite populations. We show that the two concepts can be derived from the frequency dependent Moran process in different limits. Our results help to determine the appropriate stability concept in large finite populations. The general validity of our findings is demonstrated showing that the same results are valid employing vastly different co-evolutionary processes

    Fixation and consensus times on a network: a unified approach

    Full text link
    We investigate a set of stochastic models of biodiversity, population genetics, language evolution and opinion dynamics on a network within a common framework. Each node has a state, 0 < x_i < 1, with interactions specified by strengths m_{ij}. For any set of m_{ij} we derive an approximate expression for the mean time to reach fixation or consensus (all x_i=0 or 1). Remarkably in a case relevant to language change this time is independent of the network structure.Comment: 4+epsilon pages, two-column, RevTeX4, 3 eps figures; version accepted by Phys. Rev. Let

    Adaptive evolution of molecular phenotypes

    Full text link
    Molecular phenotypes link genomic information with organismic functions, fitness, and evolution. Quantitative traits are complex phenotypes that depend on multiple genomic loci. In this paper, we study the adaptive evolution of a quantitative trait under time-dependent selection, which arises from environmental changes or through fitness interactions with other co-evolving phenotypes. We analyze a model of trait evolution under mutations and genetic drift in a single-peak fitness seascape. The fitness peak performs a constrained random walk in the trait amplitude, which determines the time-dependent trait optimum in a given population. We derive analytical expressions for the distribution of the time-dependent trait divergence between populations and of the trait diversity within populations. Based on this solution, we develop a method to infer adaptive evolution of quantitative traits. Specifically, we show that the ratio of the average trait divergence and the diversity is a universal function of evolutionary time, which predicts the stabilizing strength and the driving rate of the fitness seascape. From an information-theoretic point of view, this function measures the macro-evolutionary entropy in a population ensemble, which determines the predictability of the evolutionary process. Our solution also quantifies two key characteristics of adapting populations: the cumulative fitness flux, which measures the total amount of adaptation, and the adaptive load, which is the fitness cost due to a population's lag behind the fitness peak.Comment: Figures are not optimally displayed in Firefo

    Exploiting Soil Moisture, Precipitation and Streamflow Observations to Evaluate Soil Moisture/Runoff Coupling in Land Surface Models

    Get PDF
    Accurate partitioning of precipitation into infiltration and runoff is a fundamental objective of land surface models tasked with characterizing the surface water and energy balance. Temporal variability in this partitioning is due, in part, to changes in prestorm soil moisture, which determine soil infiltration capacity and unsaturated storage. Utilizing the National Aeronautics and Space Administration Soil Moisture Active Passive Level4 soil moisture product in combination with streamflow and precipitation observations, we demonstrate that land surface models (LSMs) generally underestimate the strength of the positive rank correlation between prestorm soil moisture and event runoff coefficients (i.e., the fraction of rainfall accumulation volume converted into stormflow runoff during a storm event). Underestimation is largest for LSMs employing an infiltrationexcess approach for stormflow runoff generation. More accurate coupling strength is found in LSMs that explicitly represent subsurface stormflow or saturationexcess runoff generation processes
    • …
    corecore