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 The NASA SMAP mission provides a unique opportunity to evaluate land surface models 12 

using high-quality soil moisture retrievals. 13 
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 Land surface models (LSMs) tend to underestimate the strength of the relationship 15 

between soil moisture and storm event runoff coefficients. 16 
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 The underestimation is largest for LSMs employing an infiltration-excess approach to 18 

stormflow generation. 19 
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Abstract 29 

Accurate partitioning of precipitation into infiltration and runoff is a fundamental objective of 30 

land surface models tasked with characterizing the surface water and energy balance. Temporal 31 

variability in this partitioning is due, in part, to changes in pre-storm soil moisture, which 32 

determine soil infiltration capacity and unsaturated storage. Utilizing the NASA Soil Moisture 33 

Active Passive Level-4 soil moisture product in combination with streamflow and precipitation 34 

observations, we demonstrate that land surface models (LSMs) generally underestimate the 35 

strength of the positive rank correlation between pre-storm soil moisture and event runoff 36 

coefficients (i.e., the fraction of rainfall accumulation depth converted into stormflow runoff 37 

during a storm event). Underestimation is largest for LSMs employing an infiltration-excess 38 

approach for stormflow runoff generation. More accurate coupling strength is found in LSMs 39 

that explicitly represent sub-surface stormflow or saturation-excess runoff generation processes. 40 

  41 

1. Introduction 42 

A first-order priority for land surface models (LSMs) is accurately capturing the degree 43 

to which pre-storm soil moisture levels constrain event runoff coefficients [Koster & Milly, 44 

1997] (i.e., the fraction of rainfall accumulation depth converted into stormflow during a storm 45 

event). The relationship between pre-storm soil moisture and hydrologic basin response has 46 

received considerable attention in small-scale field studies [e.g., Western & Grayson, 1998] and 47 

the development of hydro-geomorphologic models capable of capturing the coupled relationship 48 

between stormflow, erosion and sediment transport [e.g., Kim et al., 2016]. Such work has 49 

contributed to an improved understanding of the complex role soil moisture plays in various 50 

runoff generation processes [e.g., Mirus & Loague, 2013]. Nevertheless, runoff 51 



parameterizations in LSMs still do not reflect best hydrologic process understanding [Clark et 52 

al., 2015], and LSMs demonstrate only modest skill in estimating daily streamflow within 53 

medium-scale (10
3
 to 10

4
 km

2
) hydrologic basins [Xia et al., 2012a]. 54 

Satellite-based soil moisture products offer a potentially useful diagnostic for examining 55 

the relationship between mean soil moisture and basin runoff response in LSMs.  However, 56 

diagnostic efforts involving these products have been hampered by the low-quality of historically 57 

available, satellite-based soil moisture products [Crow et al., 2017]. In this regard, the January 58 

2015 launch of the National Aeronautics and Space Administration (NASA) Soil Moisture 59 

Active Passive (SMAP) mission [Entekhabi et al., 2010] affords a new opportunity to examine 60 

the relationship between pre-storm soil moisture and event runoff coefficients in LSMs. The 61 

SMAP mission produces a Level-4 Surface and Root-zone Soil Moisture (SMAP_L4) product 62 

based on the assimilation of SMAP brightness temperature observations into an LSM [Reichle et 63 

al., 2016; Reichle et al., 2017]. Crow et al. [2017] demonstrates that the improved accuracy, 64 

complete spatio-temporal coverage, and sub-daily frequency of the SMAP_L4 product make it 65 

uniquely suited for characterizing the relationship between pre-storm soil moisture and storm-66 

scale runoff response.  67 

Given that past studies have already focused on comparing streamflow estimates from 68 

multiple LSMs to stream gauge observations (see, e.g., Xia et al. [2012b; 2012c]), our emphasis 69 

here is on using SMAP_L4 soil moisture estimates (in concert with streamflow and precipitation 70 

accumulation observations) to verify the statistical strength of internal LSM coupling between 71 

pre-storm soil moisture and event runoff coefficients. 72 

 73 

2. Basins and data sets 74 



Our geographic domain consists of 16 medium-scale basins located in the south-central 75 

United States (see Figure 1 and Table 1). Due to their limited topographic complexity, relatively 76 

low levels of forest cover and low frequency of snow cover, these basins are well-suited to 77 

satellite retrieval of surface soil moisture. In addition, the region has experienced an 78 

extraordinarily large number of extreme precipitation events during the past few years (Figure 1) 79 

and therefore provides an unusually large sample of significant storm events during the SMAP 80 

data period. Specific basins are selected based on a screening analysis performed by the Model 81 

Parameterization Experiment [Duan et al., 2006] which eliminates those lacking adequate rain 82 

gauge density or containing significant anthropogenic modification to their river flow system. 83 

Both mean annual precipitation and mean annual runoff efficiency (i.e., mean annual streamflow 84 

divided by mean annual precipitation) increase when moving from west to east across the region 85 

(Table 1). Rangeland, grassland and winter wheat land cover is common in basins #1-#7. Higher-86 

numbered basins towards the east (i.e., basins #8-#16) contain relatively more vegetation 87 

biomass including significant amounts of upland forest cover and summer agriculture in low-88 

lying areas.  89 

2.1. Daily streamflow and rainfall observations 90 

Daily (0 to 24 UTC) basin-averaged rainfall accumulations for each basin in Figure 1 are 91 

estimated from the spatial and temporal aggregation of hourly, 0.125° rainfall accumulation 92 

estimates produced by phase 2 of the North American Land Data Assimilation System (NLDAS-93 

2). These estimates are, in turn, based on the merger of hourly rainfall radar data with a daily rain 94 

gauge analysis [Cosgrove et al., 2003]. Daily (0 to 24 LST, UTC-6 hours) streamflow values are 95 

obtained from United States Geological Survey (USGS) stream gauge stations [USGS, 2016] 96 

located at each basin outlet (Figure 1). The 6-hour offset between daily averages of precipitation 97 



and streamflow is meant to approximate the natural travel time lag between precipitation and the 98 

subsequent streamflow response at basin outlets. The impact of this simplified routing 99 

representation is discussed in the supporting materials. 100 

Daily total streamflow observations [L
3
/T] are divided by basin area to produce daily flux 101 

[L/T] estimates. The fast stormflow runoff component of the total streamflow time series was 102 

isolated using the USGS HYdrograph SEparation Program [HYSEP; Sloto et al., 1996].  103 

2.2. SMAP L4 surface and root-zone soil moisture estimates 104 

The SMAP_L4 product is generated using an ensemble-based data assimilation system 105 

that integrates SMAP brightness temperature data into the NASA Goddard Earth Observing 106 

System (GEOS) Catchment land surface model [CLSM; Koster et al., 2000]. Surface 107 

meteorological forcing data for CLSM are derived from the GEOS atmospheric assimilation 108 

system with a correction for precipitation accumulation derived from rain gauge observations 109 

[Reichle et al., 2017]. The assimilation system interpolates and extrapolates information from the 110 

SMAP brightness temperature observations in time and in space based on the relative 111 

uncertainties of the model estimates and the observations to produce a 3-hourly surface (0-5 cm) 112 

and root-zone (0-100 cm) volumetric soil moisture analysis on the 9-km EASEv2 grid [Reichle 113 

et al., 2016; 2017]. The CLSM component of the SMAP_L4 system was initialized on 1 January 114 

2014 using model states derived by looping twice through 2000-2013 forcing data. Here, 115 

SMAP_L4 (version Vv2030) 3-hourly, 9-km resolution estimates are averaged in both space and 116 

time to produce a single daily-averaged (0 to 24 UTC) soil moisture analysis for each basin. The 117 

SMAP_L4 product is wholly independent of USGS streamflow observations (used here as a 118 

point of comparison) and provides a better representation of pre-storm soil moisture conditions 119 

than SMAP Level-3 soil moisture retrieval products (Crow et al., 2017). The SMAP_L4 system 120 



also produces runoff estimates; however, these estimates are not considered here. See the 121 

supporting materials for additional discussion of the implications associated with our use of a 122 

soil moisture analysis rather than a direct remote sensing retrieval.  123 

2.3. Land surface models 124 

The NLDAS-2 project generates continuous, hourly, 0.125° output from four different 125 

LSMs: the Mosaic model [Koster & Suarez, 1994; 1996], version 2.8 of the Noah model [Xia et 126 

al., 2012a], the Sacramento (SAC) model [Koren et al., 2000; 2003], and version 4.0.3 of the 127 

Variable Infiltration Capacity (VIC) model [Liang et al., 1994; 1996]. Mosaic and Noah were 128 

developed for atmospheric general circulation models and emphasize water and energy 129 

interactions between the land surface and atmosphere [Koster and Suarez, 1996; Ek et al., 2003]. 130 

In contrast, SAC and VIC were developed as off-line (land-only) hydrological models with a 131 

focus on streamflow prediction [Burnash et al., 1973; Liang et al., 1994]. All four models are 132 

driven using NLDAS-2 forcing data and parameterizations previously described in Xia et al. 133 

[2012b] and run continuously from a January 1979 initialization based on climatological state 134 

values. In addition to these four NLDAS-2 LSMs, we also assess output from an open loop (i.e., 135 

no data assimilation) simulation with CLSM using surface meteorological forcing and a spin-up 136 

identical to that of the SMAP_L4 system (see Section 2.2; [Reichle et al. 2017]).  137 

The representation of stormflow runoff processes in each LSM varies significantly. Noah 138 

v2.8 utilizes an infiltration-excess representation based on an adaptation of the Soil Conservation 139 

Service Curve Number approach [Schaake et al., 1996]. In contrast, CLSM utilizes a saturation-140 

excess runoff parameterization based on calculating the fraction of the land surface saturated 141 

from below by a dynamic water table. VIC and Mosaic use a similar approach, except that sub-142 

grid saturation fractions are based on the grid-scale mean soil moisture values (as opposed to an 143 



explicitly calculated water table depth as in CLSM). In addition, Mosaic utilizes a simple linear 144 

model for the relationship between soil moisture and saturated fraction [Koster and Suarez, 145 

1996] while VIC employs a non-linear variable infiltration curve [Liang et al., 1994]. The SAC 146 

model calculates both the free and tension soil water state. Tension water is used to calculate so-147 

called “direct runoff,” while “surface runoff” and “sub-surface interflow” are based on free water 148 

calculations [Koren et al., 2000; 2003]. Note that the term “stormflow” is used here to refer to 149 

“surface runoff” results obtained from Noah, VIC, CLSM and Mosaic as well as the sum of the 150 

SAC “surface”, “direct” and “sub-surface interflow” runoff components.  151 

For each model, daily-averaged (0 to 24 UTC) top-layer volumetric soil moisture (0-5 cm 152 

for CLSM, and 0-10 cm otherwise), root-zone volumetric soil moisture (generally 0-100 cm), 153 

stormflow, and baseflow estimates are extracted and spatially-averaged within each basin. The 154 

conversion between SAC free/tension soil water estimates and multi-layer, volumetric soil 155 

moisture products is described in Xia et al. [2014]. Note that there is some variation, both within 156 

and between LSMs, with regards to the defined depth of root-zone soil moisture estimates. For 157 

example, Noah uses a 1-m depth for grasslands and shrubs and a 2-m depth for forests. Mosaic 158 

uses a 40-cm depth for all vegetation. VIC and SAC use a 1-m depth as a default but also apply a 159 

shallower rooting depth for certain land cover types.  160 

 161 

3. Approach 162 

3.1. Storm event definition and rank correlation metric 163 

Our analysis is based on the separation of the daily time series into discrete 6-day storm event 164 

periods. The first day of each event period contains a daily precipitation amount that exceeds a 165 

pre-set accumulation threshold level. To avoid the confounding impact of multiple events within 166 



a single storm event period, we discard any 6-day period containing two or more days exceeding 167 

this threshold. New storm event periods must also be preceded by at least a single day with a 168 

daily precipitation amount below this threshold. To mask snow-dominated events, the first day of 169 

any event period must have a daily mean air temperature greater than 2° [C] (based on NDLAS-2 170 

air temperature estimates). The observed event runoff coefficient is the ratio of accumulated 171 

streamflow to accumulated rainfall after both have been temporally summed over a given storm 172 

event period. All daily soil moisture products are 0 to 24 UTC averages. Pre-storm antecedent 173 

soil moisture is defined as the minimum daily soil moisture for the two-day interval preceding a 174 

storm event. Since all basins are small enough such that their (HYSEP-predicted) basin 175 

saturation times (i.e., the interval of time after a storm event at which stormflow is no longer 176 

observed at the basin outlet) are less than our 6-day storm event period, no routing is applied to 177 

LSM-derived runoff values. 178 

Following Crow et al. [2004; 2017], the Spearman rank correlation (R) between 179 

antecedent soil moisture and the event runoff coefficient is sampled across all available storm 180 

event periods within each basin between 31 March 2015 and 31 May 2017. Rank correlation is 181 

applied to minimize the confounding effect of potential nonlinearity in the relationship between 182 

antecedent soil moisture and event runoff coefficient. Due to the relatively short SMAP data 183 

record, which precludes the sampling of accurate R for any single basin, results presented here 184 

are based on the spatial average of R values sampled across all 16 basins (�̅�). Sensitivity 185 

analyses summarized in Crow et al. [2017] demonstrate that �̅� is relatively insensitive to the 186 

details of our storm-event identification approach (e.g., the use of a 6-day storm event period to 187 

define storm lengths and a 2-day interval to define pre-storm soil moisture). 188 



Our analysis is based on comparing �̅� values obtained from internal LSM estimates of 189 

soil moisture, runoff and LSM precipitation forcing ( 𝑅𝐿𝑆𝑀 ̅̅ ̅̅ ̅̅ ̅̅ ; based on the five different LSMs 190 

introduced in Section 2.3) to values computed from the SMAP_L4 soil moisture analysis and 191 

external observations of USGS streamflow and NLDAS-2 precipitation (𝑅𝑜𝑏𝑠
̅̅ ̅̅ ̅̅ ). Note that 192 

SMAP_L4 soil moisture does not utilize NLDAS-2 rainfall forcing and is independent of USGS 193 

streamflow observations. In addition, we never use SMAP_L4 runoff estimates. Therefore, the 194 

critical distinction between 𝑅𝐿𝑆𝑀
̅̅ ̅̅ ̅̅   and 𝑅𝑜𝑏𝑠

̅̅ ̅̅ ̅̅  is that 𝑅𝐿𝑆𝑀
̅̅ ̅̅ ̅̅  reflects only internal LSM model 195 

physics, while 𝑅𝑜𝑏𝑠
̅̅ ̅̅ ̅̅  provides an objective point of reference based on mutually independent soil 196 

moisture estimates and observed event runoff coefficients. This distinction has consequences for 197 

the impact of random error. The computation of 𝑅𝐿𝑆𝑀
̅̅ ̅̅ ̅̅  relies on internal model-based estimates of 198 

soil moisture and runoff that are derived from the LSM precipitation forcing. Therefore, model 199 

estimates are never confronted with independent external streamflow information. This ensures 200 

that 𝑅𝐿𝑆𝑀
̅̅ ̅̅ ̅̅  is insensitive to random errors in the LSM precipitation. In contrast, the presence of 201 

independent random errors (in either SMAP_L4 soil moisture, NLDAS-2 rainfall or USGS 202 

streamflow) will tend to bias 𝑅𝑜𝑏𝑠
̅̅ ̅̅ ̅̅  low [Findell et al., 2015]. See the supporting materials for 203 

additional discussion regarding the interpretation of 𝑅𝐿𝑆𝑀
̅̅ ̅̅ ̅̅  and 𝑅𝑜𝑏𝑠

̅̅ ̅̅ ̅̅ . 204 

3.2. Uncertainty description 205 

Sampling error bars for R in individual basins are estimated using a 5000-member boot-206 

strapping approach (where individual storm events are randomly sampled with replacement to 207 

preserve the underlying storm event sample size) and then combined to estimate uncertainty in 208 

�̅�. Based on the auto-correlation analysis in Crow et al. [2017], the 16 basins in Figure 1 are 209 

assumed to contain 7.4 spatially-independent samples. This adjusted sample size is used to 210 



calculate the expected reduction in sampling uncertainty associated with averaging across all 211 

basins. 212 

 213 

4. Results 214 

For all five LSMs (VIC, Noah, Mosaic, SAC and CLSM), the left-hand-side of Figure 2 215 

plots 𝑅𝐿𝑆𝑀
̅̅ ̅̅ ̅̅  values sampled between 31 March 2015 and 31 May 2017 for the 16 basins in Figure 216 

1. The right-hand-side of Figure 2 shows analogous 𝑅𝑜𝑏𝑠
̅̅ ̅̅ ̅̅   values obtained from SMAP L4 soil 217 

moisture, USGS streamflow and NLDAS-2 precipitation observations. Results are shown for the 218 

cases of utilizing both surface and root-zone soil moisture to represent pre-storm soil moisture 219 

and a storm precipitation intensity threshold of 25 mm d
-1 

(which yields 333 individual storms 220 

events across all basins during the study period).  221 

Figure 2a shows results for total streamflow (i.e., stormflow plus baseflow). As expected, 222 

𝑅𝑜𝑏𝑠
̅̅ ̅̅ ̅̅   values are significantly positive (~0.8 [-] for both root-zone and surface-zone soil moisture 223 

from SMAP_L4) and reflect a tendency for higher antecedent soil moisture to be associated with 224 

larger event runoff coefficients (and vice versa). For the surface soil moisture case, 𝑅𝑜𝑏𝑠
̅̅ ̅̅ ̅̅  values 225 

are higher than corresponding 𝑅𝐿𝑆𝑀
̅̅ ̅̅ ̅̅  sampled from internal LSM predictions. However, these 226 

differences are significant (with 95% confidence) only for VIC and generally insignificant when 227 

using root-zone soil moisture to characterize pre-storm conditions. The sharp increase in VIC 228 

and Noah 𝑅𝐿𝑆𝑀
̅̅ ̅̅ ̅̅  for the root-zone soil moisture case (versus the surface-zone case) in Figure 2a is 229 

likely due to the dominance of baseflow as a runoff generation process in VIC and Noah (see 230 

relative stormflow percentages for LSMs in Figure 2b) and the close functional relationship 231 

between root-zone soil moisture and baseflow. For VIC, it may also reflect known issues with 232 

the estimation of surface-zone soil moisture [Xia et al. 2014; 2015a]. 233 



Since our focus here is on the storm event runoff response, it is useful to filter out the 234 

impact of baseflow and isolate stormflow runoff. After removing the effects of baseflow (see 235 

Section 2), the depth of antecedent soil moisture has only a small impact on all coupling results 236 

in Figure 2b - suggesting that antecedent surface and root-zone soil moisture estimates are 237 

equally valuable for forecasting storm-scale runoff response. More importantly, the strength of 238 

the soil moisture/stormflow coupling captured by independent estimates (𝑅𝑜𝑏𝑠
̅̅ ̅̅ ̅̅ ) falls along the 239 

upper edge of the range provided by internal LSM predictions (𝑅𝐿𝑆𝑀
̅̅ ̅̅ ̅̅ ). Differences between 240 

LSMs also emerge. For example, stormflow-based 𝑅𝑜𝑏𝑠
̅̅ ̅̅ ̅̅   results in Figure 2b are significantly-241 

higher (with 95% confidence) than comparable internal 𝑅𝐿𝑆𝑀
̅̅ ̅̅ ̅̅  estimates from Noah and Mosaic. 242 

Likewise, stormflow-based 𝑅𝑜𝑏𝑠
̅̅ ̅̅ ̅̅   is larger than 𝑅𝐿𝑆𝑀

̅̅ ̅̅ ̅̅   from VIC (although not by a statistically 243 

significant amount). As discussed in the supporting materials, there are credible reasons to 244 

suspect that 𝑅𝑜𝑏𝑠
̅̅ ̅̅ ̅̅  values in Figures 2b slightly underestimate the true strength of coupling 245 

between soil moisture and event runoff coefficients. Therefore, if anything, Figure 2 246 

underestimates the magnitude of under-coupling in VIC and Noah.  In contrast, the higher 𝑅𝐿𝑆𝑀
̅̅ ̅̅ ̅̅  247 

levels predicted by SAC and CLSM are generally consistent with the 𝑅𝑜𝑏𝑠
̅̅ ̅̅ ̅̅   values (Figure 2b). 248 

See Section 5 below for a process-level discussion of these LSM differences. 249 

In addition to pre-storm soil moisture, event runoff coefficients are expected to vary as a 250 

function of storm intensity. Figure 3 plots �̅�-values (based on stormflow-only and root-zone soil 251 

moisture) that are sub-set by low (5 to 15 mm d
-1

) and high (> 25 mm d
-1

) storm intensity based 252 

on the observed daily rainfall accumulation on the first (triggering) day of each storm. 253 

Surprisingly, 𝑅𝑜𝑏𝑠
̅̅ ̅̅ ̅̅   is marginally larger for the high-intensity events than for the low-intensity 254 

ones. This is at odds with (more intuitive) Noah and CLSM LSM results in which larger events 255 

demonstrate less sensitivity to pre-storm soil moisture conditions.  256 



 257 

5. Discussion 258 

It is difficult to provide a comprehensive discussion of the model-to-model variations 259 

found in Figures 2 and 3. Nevertheless, a useful contrast can be drawn between LSMs with the 260 

highest (CLSM) and lowest (Noah) soil moisture/stormflow coupling strengths in Figure 2b. As 261 

discussed in Section 2.3, these two LSMs apply contrasting approaches to the modeling of the 262 

stormflow runoff response. The response in Noah v2.8 is based on an infiltration-excess 263 

representation whereby the fractional conversion of rainfall into stormflow is driven primarily by 264 

variations in rainfall intensity [Schaake et al., 1996]. In contrast, CLSM generates surface runoff 265 

via a saturation excess process whereby stormflow is generated by rainfall incident upon portions 266 

of the landscape that have been saturated from below by a rising water table [Koster et al., 2000]. 267 

In the case of CLSM, the efficiency of stormflow generation is tied directly to the saturated land 268 

fraction of the basin which, in turn, is tightly linked with basin-averaged surface soil moisture. 269 

Figure 2b implies that this type of direct functional relationship between surface soil moisture 270 

and stormflow generation is necessary for LSMs to demonstrate sufficient internal coupling to 271 

match the levels of coupling obtained from SMAP L4 soil moisture, independent USGS 272 

streamflow observations and NLDAS-2 precipitation. A second notable signature is the tendency 273 

for the observed coupling to increase as a function of storm intensity (Figure 3). This too is at 274 

odds with the theory of infiltration-excess runoff where the relative impact of pre-storm soil 275 

moisture is predicted to decrease for high-intensity storm events [Schaake et al., 1996]. 276 

However, the observed trend of rainfall intensity on coupling is not statistically significant (see 277 

Figure 3) and potentially impacted by our inability to adequately sample across a wider range of 278 

storm intensities. 279 



However, the parameterization of single stormflow process is also potentially important. 280 

For example, the Noah infiltration excess representation is based on a modification to a curve 281 

number approach [Schaake et al., 1996] that can be calibrated to lend varying amounts of weight 282 

to pre-storm soil moisture conditions [Massari et al., 2014]. Such parameter modifications could, 283 

in principle, correct for the significant under-coupling observed in Figure 2b. Nevertheless, if 284 

infiltration-excess runoff approaches are applied in this region, they should, at a minimum, be 285 

recalibrated to substantially increase the importance of pre-storm soil moisture.  286 

Among the other LSMs, the 95% confidence intervals for VIC and SAC internal coupling 287 

results in Figures 2 and 3 generally overlap those obtained from SMAP_L4 and USGS 288 

observations. The single exception being the significantly low coupling observed between VIC 289 

surface soil moisture and event runoff coefficients for total runoff results in Figure 2a. On the 290 

other hand, Mosaic results generally fall between those of Noah and VIC. The overall trend of 291 

low coupling in Noah and Mosaic versus higher coupling in SAC, CLSM and VIC is consistent 292 

with variations in model complexity (with Noah and Mosaic utilizing notably-simpler 293 

approaches for stormflow generation - see Section 2.3) and is potentially reflective of the origins 294 

of SAC and VIC as hydrologic models with a more extensive history of calibration against 295 

observed streamflow. This assessment is also consistent with Xia et al. [2012a] who examined 296 

the accuracy of LSM runoff prediction versus daily streamflow observations from the NLDAS-2 297 

LSMs and found generally superior results for VIC and SAC relative to Noah and Mosaic.   298 

 299 

6. Summary and Conclusions 300 

 Accurately representing the relationship between pre-storm soil moisture and subsequent 301 

event runoff coefficients is a fundamental requirement of any LSM [Koster and Milly, 1997] and 302 



necessary for the successful application of LSMs to hydrologic forecasting. Utilizing a metric 303 

developed by Crow et al. [2005; 2017], we demonstrate that, within the study domain illustrated 304 

in Figure 1, soil moisture/stormflow coupling strength estimates provided by observations (i.e., 305 

SMAP_L4 soil moisture, USGS streamflow, and NLDAS-2 radar/gauge precipitation) is at the 306 

top of the inter-model range obtained from various LSMs. An apparent low bias in LSM-based 307 

coupling estimates is particularly evident for LSMs (e.g., Noah v2.8) that utilize an infiltration-308 

excess conceptualization of stormflow (Figure 2b). Noah v2.8 also fails to match the observed 309 

variation of soil moisture/stormflow coupling with storm intensity (Figure 3). Analogous, 310 

although less severe, problems are noted for the simplified stormflow approach applied in 311 

Mosaic (Figure 2b). The implication is that these LSMs tend to squander a source of hydrologic 312 

predictability by under-utilizing their internal soil moisture estimates for forecasting variations in 313 

runoff coefficients during intense storm events. A precise diagnosis of processes (and/or 314 

parameterizations) responsible for this under-coupling will require a more incremental approach 315 

for generating LSM model variations. Modular LSMs, such as the Noah Multi-parameterization 316 

LSM (Noah-MP; Niu et al., 2011), are particularly well-suited for this purpose.   317 

Likewise, several important caveats need to be considered. First, while LSM coupling 318 

strengths are insensitive to random errors in LSM forcing data, systematic forcing error may still 319 

have an impact. For example, coarse spatial resolution rainfall data induces a conditional bias 320 

whereby extreme rainfall rates are systematically underestimated. Since LSM runoff predictions 321 

may respond in a nonlinear manner to changes in rainfall intensity, such a conditional bias could 322 

conceivably induce systematic changes in internal LSM coupling. Therefore, our results are 323 

potentially sensitive to the spatial resolution of the rainfall forcing data used to force the LSM 324 

simulations. Second, significant bias in internal LSM results emerges only after baseflow has 325 



been separated out of both the modeled and observed streamflow time series (compare Figures 326 

2a and 2b). Due to uncertainty in baseflow separation approaches for observed streamflow, and 327 

variations in the definition of runoff components acquired from different LSMs, there is inherent 328 

ambiguity in the cross-comparison of stormflow estimates obtained from different sources. 329 

Finally, given that the relative importance of various runoff generation processes is known to 330 

vary substantially across different climates and land cover types, a wider geographic focus is 331 

required before more general conclusions can be drawn.  332 
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 514 

Table 1. Attributes of basins in Figure 1.  515 

 516 

Basin 

Number 

USGS 

Station 

No. 

USGS Station Name 

Basin 

Size 

(km
2
) 

Annual 

P 

(mm) 

Runoff 

Ratio 

Q/P 

1 07144780 Ninnescah River AB Cheney Re, KS 2,049 768 0.08 

2 07144200 Arkansas River at Valley Center, KS 3,402 842 0.11 

3 07152000 Chikaskia River near Blackwell, OK 4,891 896 0.19 

4 07243500 Deep Fork near Beggs, OK 5,210 945 0.15 

5 07147800 Walnut River at Winfield, KS 4,855 980 0.31 

6 07177500 Bird Creek Near Sperry, OK 2,360 1025 0.23 

7 06908000 Blackwater River at Blue Lick, MO 2,924 1140 0.29 

8 07196500 Illinois River near Tahlequah, OK 2,492 1175 0.29 

9 07019000 Meramec River near Eureka, MO 9,766 1187 0.28 

10 07052500 James River at Galena, MO 2,568 1255 0.31 

11 07186000 Spring River near Wace, MO 2,980 1258 0.27 

12 07056000 Buffalo River near St. Joe, AR 2,148 1238 0.37 

13 06933500 Gasconade River at Jerome, MO 7,356 1293 0.24 

14 07067000 Current River at Van Buren, MO 4,351 1309 0.31 

15 07068000 Current River at Doniphan, MO 5,323 1314 0.36 

16 07290000 Big Black River NR Bovina, MS 7,227 1368 0.37 

 517 

  518 



 519 

 520 

Figure 1. Locations of the 16 study basins within the south-central United States. Color shading 521 

represents a (county-scale) map of the total number of flash-flood events observed between Jan. 522 

2015 and Nov. 2016 [NWS, 2007]. Basin numbers refer to the listing order in Table 1. Circles 523 

indicate basin outlets and USGS stream gauge locations. 524 



  525 

 526 

 527 

        528 
 529 

 530 

Figure 2. Values of �̅� (with 95% confidence intervals) sampled using both a) total streamflow 531 

(i.e., stormflow + baseflow) and b) stormflow only. The left-hand side of the figure shows 532 

internal 𝑅𝐿𝑆𝑀
̅̅ ̅̅ ̅̅   predictions while the right-hand side shows 𝑅𝑜𝑏𝑠

̅̅ ̅̅ ̅̅   sampled from independent 533 

SMAP_L4 soil moisture, USGS streamflow and NLDAS-2 rainfall observations. Colors/symbols 534 

indicate the use of either surface-zone (SFSM) or root-zone (RZSM) soil moisture. Numerical 535 

labels in part b) relate the percentage of total streamflow attributed to stormflow. All results are 536 

based on a triggering rainfall intensity of 25 mm d
-1

. 537 

 538 

 539 

 540 



 541 

 542 

                               543 

 544 
 545 

 546 

 547 
Figure 3. As in Figure 2, except colors/symbols indicate the sampling of storm events with 548 

either low (5-15 mm d
-1

) or high (> 25 mm d
-1

) triggering rainfall intensities. All results are 549 

based on the use of root-zone soil moisture and limited to the stormflow component of total 550 

streamflow. Note that high-intensity (> 25 mm d
-1

) results are identical to “RZSM” results shown 551 

in Figure 2b. 552 

 553 



Figure 1.



1
2

5

3

6

4

8 12

7

11

10

13
9

14

15

16

N
u

m
b

e
r
 o

f Ja
n

. 2
0

1
5

-
N

o
v
. 2

0
1

6
 F

la
s
h

 F
lo

o
d

 E
v

e
n

t
s

TX
LA

OK AR

MO

KS

MS



Figure 2.



VIC Noah Mosaic SAC CLSM Observed

0

0.2

0.4

0.6

0.8

1

SFSM

RZSM

VIC Noah Mosaic SAC CLSM Observed

0

0.2

0.4

0.6

0.8

1

R
 (

so
il

 m
o
is

tu
re

, 
ev

en
t 

ru
n
o
ff

 c
o
ef

fi
ci

en
t)

 [
-]

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
 

SFSM

RZSM

R
LSM

R
LSM

27%

32%

64%

R
obs

Total Runoff

Stormflow Only

66% 99% 64%

R
obs

Internal LSM Estimates

a)

b)



Figure 3.



VIC Noah Mosaic SAC CLSM Observed

0

0.2

0.4

0.6

0.8

1

R
  
(s

o
il

 m
o

is
tu

re
, 

ev
en

t 
ru

n
o

ff
 c

o
ef

fi
ci

en
t)

 [
-]

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

 

5 - 15 mm d
-1

> 25 mm d
-1

Internal LSM Estimates

Stormflow Only/Root-Zone Soil Moisture

    R
LSM     R

obs



Supporting Materials 1 
 2 
 3 
Appendix A: Interpretation of Coupling Strength Estimates 4 
 5 
 6 

As described in the main text, our primary goal here is deriving estimates of the 7 

correlation event runoff coefficient serial ranks (RC) and pre-storm soil moisture serial ranks 8 

(SM) for a given basin:  9 = ( , )( ) ( ) .       (A1) 10 

The true value of this rank correlation, Rtrue, is obtained if RC and SM are free of error. 11 

Replicating this true value should be the goal of any credible land surface model (LSM). Note 12 

that the overbar on R, used in the main text to indicate averaging across multiple basins, in 13 

dropped here.   14 

Of course, perfect time series representations of RC and SM are never available. Instead, 15 

we rely on uncertain estimates of these quantities. These estimates can be approximated as: 16 = +        (A2) 17 = +      18 

where ξRC and ξSM are mean-zero, error variables in ranks. Note that scaling gain factors are 19 

neglected in (A2) since such factors have no bearing on the correlation-based discussion which 20 

follows below.  21 

Without making any statistical assumptions regarding these errors, re-calculating (A1) 22 

using estimated values in (A2), yields: 23 

  = ( , )  ( , ) ( , ) ( , )( )  ( )   .  (A3) 24 

Equation (A3) can be used to estimate the impact of errors in RC and SM on ranks correlations 25 

sampled from real data.  However, several important distinctions should be made between 26 



estimates of rank correlation derived from largely independent, observation-based sources (i.e., 27 

Robs computed using SM from a data assimilation analysis and external RC obtained from 28 

independent rain and stream gauge observations) and estimates of R derived from internally 29 

consistent LSM estimates (i.e., RLSM computed from internal model estimates of soil moisture, 30 

runoff, and precipitation, with the latter also used to force the LSM and generate the LSM soil 31 

moisture and runoff estimates). These issues are discussed in depth below.  32 

 33 

A.1. Impact of random error  34 

By construction, RLSM is insensitive to purely random errors in the LSM forcing (see main 35 

text Section 3.1). Therefore, if (A1) is applied to LSM-internal RC and SM results provided by a 36 

physically realistic and unbiased simulation, the resulting correlation ( ) should indeed 37 

match . In contrast, an observation-based correlation estimate (Robs) is biased low in the 38 

presence of independent random error in RC and SM. This can be illustrated by assuming wholly 39 

independent and orthogonal observational errors in (A2) and, thereby, simplifying (A3) to: 40 

 = ( , )( ) ( )  ( ) ( )    .   (A4) 41 

The sole difference between (A4) and (A1) is that the denominator of (A3) is inflated by the 42 

additional random error variance associated with uncertain SMest and RCest observations in (A2). 43 

Given that Cov( , ) is almost always positive (see main text), this induces a negative bias 44 

into  relative to  (or Rtrue).  45 

The magnitude of this bias is determined by the signal-to-noise (SNR) characteristics of 46 

SMest and RCest (with lower SNR associated with a larger degradation on ). Based on this 47 

reasoning, Crow et al. [2017] argued that the size of  can be interpreted as a proxy for the 48 

skill of various soil moisture products in estimating pre-storm soil moisture. Specifically, they 49 



found that the SMAP_L4 product provides more pre-storm soil moisture information for short-50 

term hydrologic forecasts than other remotely sensed product - including the SMAP Level 3 soil 51 

moisture product (SMAP_L3). However, since factors other than soil moisture also impact RC, 52 

even perfect SM and RC observations should not be expected to yield an  of one. 53 

 54 

A.2. Impact of non-random error 55 

If errors in (A2) are not wholly random, the interpretation of (A3) is complicated by the 56 

non-zero error covariance terms within its numerator. For example, the SMAP_L4 system 57 

contains a land surface modeling component and cannot be considered a purely independent 58 

observation. In particular, the GEOS-5 precipitation product used to force the SMAP_L4 59 

assimilation model is gauge-corrected using a set of rain gauges which overlap with an 60 

analogous correction applied to the NLDAS-2 precipitation product. Consequently, there exists 61 

the possibility for cross-correlated error to arise between SMAP_L4-based SMest and NLDAS-2 62 

rainfall accumulation observations used to calculation observation-based RCest. If present, such 63 

error correlation would cause the overestimation of pre-storm soil moisture (due to the 64 

overestimation of pre-storm rainfall) to be associated with the underestimation of storm-scale 65 

runoff efficiency (due to the continued overestimation of within-storm rainfall used to normalize 66 

streamflow) and vice versa. As such, it would lead to Cov( , ) ≤ 0  in (A3).  67 

Similar considerations should be made for the Cov( , ) term in (A3). Errors in the 68 

SMAP_L3 retrieval product are known to be linked with inter-annual vegetation variability 69 

[Dong et al., 2018]. Given that there is overlap in the ancillary vegetation parameters used in the 70 

SMAP_L4 and SMAP_L3 retrieval approaches, and inter-annual variability in vegetation can 71 

conceivably be linked to surface infiltration properties (and thus RC), non-zero Cov( , ) 72 



could conceivably arise from pronounced levels of inter-annual vegetation variability. However, 73 

this connection is tenuous and our study region is, in fact, characterized by relatively low levels 74 

of inter-annual vegetation variability during the SMAP data era [Dong et al., 2018]. Therefore, 75 

the Cov( , ) term in (A3) is expected to be negligible. Likewise, we are not aware of 76 

physical arguments for why error in observed RCest (derived solely from ground-based rain 77 

gauge, weather radar and stream gauge observations) would be correlated with true pre-storm SM 78 

levels. Therefore, the Cov( , ) term in (A3) is also assumed to negligible.   79 

In summary, given that Cov( , ) > 0 (see Figure 2b in the main text), the three (non-80 

random error) tendencies identified here (i.e., Cov( , ) ≤ 0, Cov( , ) ~ 0 and 81 Cov( , ) ~ 0) should, if anything, cause  to be slightly biased low relative to .  82 

 83 

A.3. Impact of runoff routing error 84 

A final consideration for calculating  using observed streamflow is accounting for 85 

the time lag between incident rainfall and observed streamflow at the basin outlet. Here, we 86 

assumed a fixed, 6-hour time lag between incident rainfall fall and streamflow response 87 

measured at basin outlets (see Section 2.1 in the main text). More complex runoff routing 88 

procedures (including, for example, the explicit calibration of basin-dependent time lags) would 89 

almost certainly increase  but were not applied to avoid the artificial enhancement of  90 

via explicit tuning. Therefore, the simplicity of the routing approach used here introduces a 91 

potential source of low bias into (positive)  values. Note that an analogous issue does not 92 

exist for  estimates since LSM SM are compared to LSM RC derived directly from (un-93 

routed) LSM runoff estimates. 94 

 95 



A.4. Summary of impacts 96 

All considerations detailed above suggest that (non-negative)  results presented in 97 

the main text will, if anything, be slightly biased low relative to reference  values 98 

(hypothetically) sampled from perfect SM and RC products.  99 

 100 
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