78 research outputs found

    Does the Red Queen reign in the kingdom of digital organisms?

    Get PDF
    In competition experiments between two RNA viruses of equal or almost equal fitness, often both strains gain in fitness before one eventually excludes the other. This observation has been linked to the Red Queen effect, which describes a situation in which organisms have to constantly adapt just to keep their status quo. I carried out experiments with digital organisms (self-replicating computer programs) in order to clarify how the competing strains' location in fitness space influences the Red-Queen effect. I found that gains in fitness during competition were prevalent for organisms that were taken from the base of a fitness peak, but absent or rare for organisms that were taken from the top of a peak or from a considerable distance away from the nearest peak. In the latter two cases, either neutral drift and loss of the fittest mutants or the waiting time to the first beneficial mutation were more important factors. Moreover, I found that the Red-Queen dynamic in general led to faster exclusion than the other two mechanisms.Comment: 10 pages, 5 eps figure

    Inferring Deleterious-Mutation Parameters in Natural Daphnia Populations

    Get PDF
    Deng and Lynch (1, 2) proposed to characterize deleterious genomic mutations from changes in the mean and genetic variance of fitness traits upon selfing in outcrossing populations. Such observations can be readily acquired in cyclical parthenogens. Selfing and life-table experiments were performed for two such Daphnia populations. A significant inbreeding depression and an increase of genetic variance for all traits analyzed were observed. Deng and Lynch's (2) procedures were employed to estimate the genomic mutation rate (U), mean dominance coefficient ( [Image: see text] ), mean selection coefficient ( [Image: see text] ), and scaled genomic mutational variance ( [Image: see text] ). On average, [Image: see text] , [Image: see text] , [Image: see text] and [Image: see text] (^ indicates an estimate) are 0.84, 0.30, 0.14 and 4.6E-4 respectively. For the true values, the [Image: see text] and [Image: see text] are lower bounds, and [Image: see text] and [Image: see text] upper bounds

    Reproducibility in the absence of selective reporting : An illustration from large-scale brain asymmetry research

    Get PDF
    Altres ajuts: Max Planck Society (Germany).The problem of poor reproducibility of scientific findings has received much attention over recent years, in a variety of fields including psychology and neuroscience. The problem has been partly attributed to publication bias and unwanted practices such as p-hacking. Low statistical power in individual studies is also understood to be an important factor. In a recent multisite collaborative study, we mapped brain anatomical left-right asymmetries for regional measures of surface area and cortical thickness, in 99 MRI datasets from around the world, for a total of over 17,000 participants. In the present study, we revisited these hemispheric effects from the perspective of reproducibility. Within each dataset, we considered that an effect had been reproduced when it matched the meta-analytic effect from the 98 other datasets, in terms of effect direction and significance threshold. In this sense, the results within each dataset were viewed as coming from separate studies in an "ideal publishing environment," that is, free from selective reporting and p hacking. We found an average reproducibility rate of 63.2% (SD = 22.9%, min = 22.2%, max = 97.0%). As expected, reproducibility was higher for larger effects and in larger datasets. Reproducibility was not obviously related to the age of participants, scanner field strength, FreeSurfer software version, cortical regional measurement reliability, or regional size. These findings constitute an empirical illustration of reproducibility in the absence of publication bias or p hacking, when assessing realistic biological effects in heterogeneous neuroscience data, and given typically-used sample sizes

    Comparative cellular analysis of motor cortex in human, marmoset and mouse

    Get PDF
    The primary motor cortex (M1) is essential for voluntary fine-motor control and is functionally conserved across mammals(1). Here, using high-throughput transcriptomic and epigenomic profiling of more than 450,000 single nuclei in humans, marmoset monkeys and mice, we demonstrate a broadly conserved cellular makeup of this region, with similarities that mirror evolutionary distance and are consistent between the transcriptome and epigenome. The core conserved molecular identities of neuronal and non-neuronal cell types allow us to generate a cross-species consensus classification of cell types, and to infer conserved properties of cell types across species. Despite the overall conservation, however, many species-dependent specializations are apparent, including differences in cell-type proportions, gene expression, DNA methylation and chromatin state. Few cell-type marker genes are conserved across species, revealing a short list of candidate genes and regulatory mechanisms that are responsible for conserved features of homologous cell types, such as the GABAergic chandelier cells. This consensus transcriptomic classification allows us to use patch-seq (a combination of whole-cell patch-clamp recordings, RNA sequencing and morphological characterization) to identify corticospinal Betz cells from layer 5 in non-human primates and humans, and to characterize their highly specialized physiology and anatomy. These findings highlight the robust molecular underpinnings of cell-type diversity in M1 across mammals, and point to the genes and regulatory pathways responsible for the functional identity of cell types and their species-specific adaptations.Cardiovascular Aspects of Radiolog

    Synthesis of YBaCuO Superconductors from Solutions in Liquid Ammonia

    No full text
    YBa2Cu3O7−x (123) superconducting powders have been advantageously prepared from liquid ammonia solutions of nitrate, acetate, and perchlorate precursors. The synthetic techniques used include solution pyrolysis, freeze drying, and chemical solidification by reaction with a Lewis acid. Metal stoichiometry was determined by gravimetric analysis and atomic absorption spectroscopy. Phase characterization was accomplished by powder X-ray diffraction which revealed at least 98% pure 123 for some samples. Resistivity and magnetic susceptibility measurements confirm the superconducting properties of the products with critical temperatures around 90 K. Finally, chemical and superconducting properties are discussed as a function of process parameters

    Demonstrating High-Temperature Superconductivity in the Chemistry Lab through the Meissner Effect

    No full text
    A method to sensitively measure the Meissner effect with a top-loading balance

    The challenges and opportunities of re-studying community on Sheppey: Young people’s imagined futures

    Get PDF
    The ‘Living and Working on Sheppey: Past, Present and Future’ project took its starting point from the research undertaken by Ray Pahl and his team three decades ago on the Isle of Sheppey. In 2009–11, we revisited some of Pahl's archived material, collected new (including some replicated) data and produced new materials, working collaboratively with community members of the Blue Town Heritage Centre on Sheppey. In this article, we examine the methodological challenges and opportunities of re-studying communities in this way, discuss the implications of community involvement in carrying out a re-study, and present some findings from one aspect of the re-study: young people's imagined futures in 1978 and 2009–10

    Digitoxin

    No full text
    • …
    corecore