55 research outputs found

    Coffee and tomato share common gene repertoires as revealed by deep sequencing of seed and cherry transcripts

    Get PDF
    An EST database has been generated for coffee based on sequences from approximately 47,000 cDNA clones derived from five different stages/tissues, with a special focus on developing seeds. When computationally assembled, these sequences correspond to 13,175 unigenes, which were analyzed with respect to functional annotation, expression profile and evolution. Compared with Arabidopsis, the coffee unigenes encode a higher proportion of proteins related to protein modification/turnover and metabolism—an observation that may explain the high diversity of metabolites found in coffee and related species. Several gene families were found to be either expanded or unique to coffee when compared with Arabidopsis. A high proportion of these families encode proteins assigned to functions related to disease resistance. Such families may have expanded and evolved rapidly under the intense pathogen pressure experienced by a tropical, perennial species like coffee. Finally, the coffee gene repertoire was compared with that of Arabidopsis and Solanaceous species (e.g. tomato). Unlike Arabidopsis, tomato has a nearly perfect gene-for-gene match with coffee. These results are consistent with the facts that coffee and tomato have a similar genome size, chromosome karyotype (tomato, n=12; coffee n=11) and chromosome architecture. Moreover, both belong to the Asterid I clade of dicot plant families. Thus, the biology of coffee (family Rubiacaeae) and tomato (family Solanaceae) may be united into one common network of shared discoveries, resources and information

    Terminal-repeat retrotransposons with GAG domain in plant genomes : a new testimony on the complex world of transposable elements

    Get PDF
    A novel structure of nonautonomous long terminal repeat (LTR) retrotransposons called terminal repeat with GAG domain (TR-GAG) has been described in plants, both in monocotyledonous, dicotyledonous and basal angiosperm genomes. TR-GAGs are relatively short elements in length (<4 kb) showing the typical features of LTR-retrotransposons. However, they carry only one open reading frame coding for the GAG precursor protein involved for instance in transposition, the assembly, and the packaging of the element into the virus-like particle. GAG precursors show similarities with both Copia and Gypsy GAG proteins, suggesting evolutionary relationships of TR-GAG elements with both families. Despite the lack of the enzymatic machinery required for their mobility, strong evidences suggest that TR-GAGs are still active. TR-GAGs represent ubiquitous nonautonomous structures that could be involved in the molecular diversities of plant genomes

    Dihaploid Coffea arabica genome sequencing and assembly.

    Get PDF
    Coffea arabica which accounts for 70% of world coffee production is an allotetraploid with a genome size of approximately 1.3 Gb and is derived from the hybridization of C. canephora (710 Mb) and C. eugenioides (670 Mb). To elucidate the evolutionary history of C. arabica, and generate critical information for breeding programs, a sequencing project is underway to finalize a reference genome using a dihaploid line and a set of Menu Abstract: Dihaploid Coffea arabica Genome Sequencing and Assembly (Plant and Animal Genome XXIII Conference) https://pag.confex.com/pag/xxiii/webprogram/Paper16983.html [25/02/2015 15:00:12] 30 C. arabica accessions

    High resolution synteny maps allowing direct comparisons between the coffee and tomato genomes

    Get PDF
    Tomato (Solanum lycopersicum) and coffee (Coffea canephora) belong to the sister families Solanaceae and Rubiaceae, respectively. We report herein the mapping of a common set of 257 Conserved Ortholog Set II genes in the genomes of both species. The mapped markers are well distributed across both genomes allowing the first syntenic comparison between species from these two families. The majority (75%) of the synteny blocks are short (<4 cM); however, some extend up to 50 cM. In an effort to further characterize the synteny between these two genomes, we took advantage of the available sequence for the tomato genome to show that tomato chromosome 7 is syntenic to half of the two coffee linkage groups E and F with the putative break point in tomato localized to the boundary of the heterochromatin and euchromatin on the long arm. In addition to the new insight on genome conservation and evolution between the plant families Solanaceae and Rubiaceae, the comparative maps presented herein provide a translational tool by which coffee researchers may take benefit of DNA sequence and genetic information from tomato and vice versa. It is thus expected that these comparative genome information will help to facilitate and expedite genetic and genomic research in coffee

    A genetically anchored physical framework for Theobroma cacao cv. Matina 1-6

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The fermented dried seeds of <it>Theobroma cacao </it>(cacao tree) are the main ingredient in chocolate. World cocoa production was estimated to be 3 million tons in 2010 with an annual estimated average growth rate of 2.2%. The cacao bean production industry is currently under threat from a rise in fungal diseases including black pod, frosty pod, and witches' broom. In order to address these issues, genome-sequencing efforts have been initiated recently to facilitate identification of genetic markers and genes that could be utilized to accelerate the release of robust <it>T. cacao </it>cultivars. However, problems inherent with assembly and resolution of distal regions of complex eukaryotic genomes, such as gaps, chimeric joins, and unresolvable repeat-induced compressions, have been unavoidably encountered with the sequencing strategies selected.</p> <p>Results</p> <p>Here, we describe the construction of a BAC-based integrated genetic-physical map of the <it>T. cacao </it>cultivar Matina 1-6 which is designed to augment and enhance these sequencing efforts. Three BAC libraries, each comprised of 10× coverage, were constructed and fingerprinted. 230 genetic markers from a high-resolution genetic recombination map and 96 Arabidopsis-derived conserved ortholog set (COS) II markers were anchored using pooled overgo hybridization. A dense tile path consisting of 29,383 BACs was selected and end-sequenced. The physical map consists of 154 contigs and 4,268 singletons. Forty-nine contigs are genetically anchored and ordered to chromosomes for a total span of 307.2 Mbp. The unanchored contigs (105) span 67.4 Mbp and therefore the estimated genome size of <it>T. cacao </it>is 374.6 Mbp. A comparative analysis with <it>A. thaliana, V. vinifera</it>, and <it>P. trichocarpa </it>suggests that comparisons of the genome assemblies of these distantly related species could provide insights into genome structure, evolutionary history, conservation of functional sites, and improvements in physical map assembly. A comparison between the two <it>T. cacao </it>cultivars Matina 1-6 and Criollo indicates a high degree of collinearity in their genomes, yet rearrangements were also observed.</p> <p>Conclusions</p> <p>The results presented in this study are a stand-alone resource for functional exploitation and enhancement of <it>Theobroma cacao </it>but are also expected to complement and augment ongoing genome-sequencing efforts. This resource will serve as a template for refinement of the <it>T. cacao </it>genome through gap-filling, targeted re-sequencing, and resolution of repetitive DNA arrays.</p
    corecore