65 research outputs found

    Étude de la production des ions bromate lors de l'ozonation des eaux de la Banlieue de Paris : choix du mode d'ozonation et variation des param tres physico-chimiques

    Get PDF
    Cette étude a permis d'évaluer l'importance de la concentration en ions bromure, de la température et de la nature de la Matière Organique Naturelle (MON) sur la production des ions bromate en s'appuyant sur des expériences conduites en laboratoire et sur pilote semi-industriel (Centre d'Essais de Méry-sur-Oise).Trois campagnes d'ozonation effectuées en parallèle à Méry-sur-Oise et au LCEE (Laboratoire de Chimie de l'Eau et de l'Environnement) sur des eaux filtrées sable, ont montré que les expériences conduites en laboratoire et sur pilote semi-industriel mènent à des résultats similaires, soit une relation linéaire [BrO3-]=f (C∙τ) vérifiant une pente identique pour des conditions expérimentales données (teneur en ions bromure, température, origine de l'eau). Ces travaux ont montré de façon nouvelle qu'une faible variation de la concentration en ions bromure (± 15 à 20 µg.L-1) suffisait à modifier significativement la formation des ions bromate. A C∙τ=10 et T=21°C, la production des ions bromate est passée de 16 à 27 µg.L-1 pour une augmentation de la concentration en ions bromure de 80 à 95 µg.L-1. Les résultats obtenus ont montré de plus que la température est un facteur important puisqu'une différence de 8°C (13 à 21°C) a entraîné, pour la même eau (80 µg.L-1 d'ions bromure, C∙τ=10), une augmentation de la concentration en ions bromate de 10 à 16 µg.L-1. Pour d'autres eaux (Seine, Marne et Oise), trois autres campagnes conduites avec des eaux clarifiées ont été effectuées après ajustement de la teneur en ions bromure et régulation de la température, ces trois eaux présentant par ailleurs des caractéristiques similaires en ce qui concerne le pH et l'alcalinité. A C∙τ équivalent, la production d'ions bromate s'est avérée significativement plus faible pour l'eau de l'Oise que pour les deux autres eaux. La nature de la MON pourrait donc avoir une influence notable sur la formation des ions bromate.The publication of Kurokawa et al. in 1990 confirming the toxicity of bromate of rats and mice, initiated the research effort that was internationally conducted during the last seven years to better understand the reaction mechanisms of bromate formation during the ozonation of natural waters. Based on the research findings regarding the effect of a number of parameters (bromide, ozone dose, pH, temperature, alkalinity, DOC content, ammonia, ...), predictive models (empirical and reaction kinetic based models), including molecular and/or radical pathways, have been developed with more or less success. Complementary results are still needed to better understand this complex mechanism.The main objective of our work was to evaluate how the seasonal variation of the physical chemical characteristics of Paris-area source waters (i.e. bromide content, temperature, natural organic matter) can affect the production of bromate during ozonation. In order to confirm that lab-scale experiments could be proposed to develop such research program, parallel tests were first conducted at the bench- and pilot-scale based on comparable C∙τ conditions. The lab-scale reactor was a 380 ml glass column (internal diameter: 0.02 m; height: 1.2 m) equipped with a water jacket to allow temperature to be varied and maintained. These reactor was used as a continuous flow reactor with recirculation. The pilot-scale ozonation contactor installed at the Méry sur Oise water treatment plant was comprised of four 30-liter columns in series (diameter: 0.1m ; height: 4m). The first column is used as the application column while the three others are used as residence column. The results have shown that lab-scale ozonation experiments conducted on Méry sur Oise sand filtered water led to similar results compared to pilot ozonation conducted on the same water and at the same temperature (sampled the same day) using the Méry sur Oise pilot-scale reactor. For applied C∙τ that ranged from 4 to 20 mg O3/L.min, similar linear relationship between bromate formation and applied C∙τ was obtained with the two reactors.A survey conducted on the Oise River has shown that the bromide concentration ranged from 40 µg/L (winter period) to 80 µg/L (summer period). If it is already well known that higher the bromide content, higher the bromate formation, our work has also pointed out that even a small increase of the bromide concentration from 80 to 95 µg/L (15 µg/L of bromide spiked as KBr) can significantly impact the bromate formation (same experimental conditions) that, as an example, increased from 16 to 27 µg/L for C.t of 10 at 21 °C.The temperature of the Oise river can vary from 5 °C up to 25 °C. Using carefully controlled temperature conditions, one can observed that the slope of the bromate production versus applied C∙τ increased with increasing temperature (same water). For example, the production of bromate during the ozonation (applied C∙τ=10) of the Méry sur Oise sand filtered water was 7, 10 and 16 µg/L for 5, 13 and 21 °C, respectively. Complementary experiments, have shown that the impact of the variation of the initial bromide concentration was proportionally more important for low-temperature water (5 to 13 °C) than for moderate-temperature water (20 °C).The origin and nature of the water is considered to play a significant role on the formation of bromate during ozonation, however few studies have evaluated the importance of these parameters using carefully controlled experimental conditions. In order to better define how important is the change in bromate production with the modification of the quality of the Paris suburbs water sources, especially the organic content (nature and concentration of the NOM), two sets of experiments were conducted.In the first part of the work, the Méry sur Oise sand filtered water was sampled at three different periods of the year 1996 (June, July and December), and the ozonation experiments were conducted at the same temperature (21 °C) after bromide concentration was adjust to 80 µg/L. The three water samples had the same pH and did not contain ammonia. Significant differences were observed in the bromate production, showing a larger production with the winter water as compared to the summer water. The fact that the winter water was enriched in DOC (3.7 mg/L of DOC) as compared to the two others (2.6 - 2.7 mg/L of DOC) may explain this difference since a larger ozone dose was probably necessary (ozone transfert not controlled because of the small size of the lab-scale reactor) to reach the same applied C∙τ due to a higher ozone consumption from the natural organic matter. The slightly lower alkalinity of the winter sample (200 mg/L as CaCO3 as compared to 250 mg/L CaCO3 for the summer samples) could have led to a less pronounced scavenger effect, condition that favors the radical pathway which is generally predominant. However, it is also known that carbonate species can also promote the formation of bromate due to the production of carbonate radicals. Comparing the results obtained with the water samples collected during the summer period, more bromate was produced in July than in June. The higher hydrophobic character (more aromatic in character) of the NOM of the water sampled in July (SUVA=2.15) as compared to the June sample (SUVA=1.88), characteristic that favor the ozone consumption and consequently the OH radical production, may justify this finding.In the second part of the work, the bromate formation obtained during the ozonation of the three major water sources of the Paris suburbs (sampled after clarification), Oise River, Marne River and Seine River, was compared (same temperature) after the bromide content was adjust to 80 µg/L. Similar results were obtained with the clarified Marne river and Seine River, the two waters showing the same physical chemical characteristics (2.2 and 2.5 mg/L of DOC; pH 7.9 and 7.8; Alkalinity: 225 and 210 mg/L as CaCO3). A lower production of bromate as a function of the applied C∙τ was observed with the clarified Oise river, result that is in contradiction with our previous hypotheses since this water source showed the highest DOC content, the highest SUVA and the lowest alkalinity among the three waters studied.More work needs to be done to better understand the impact of the origin and nature of the NOM on the bromate formation mechanisms. As a general conclusion, this work also confirmed that the physical chemical characteristics of source water (DOC, temperature, alkalinity, bromide content,…) are more important factors as compared to the hydraulic characteristics of the reactor.Keywords

    Impact des traitement de potabilisation sur le CODB et la distribution des substances humiques et non humiques de la matière organique naturelle

    Get PDF
    Cette étude a consisté à évaluer et à comparer l'impact des traitements de coagulation-floculation, ozonation et filtration sur charbon actif en grains sur la matière organique dissoute de différentes eaux de rivières et de retenues françaises en s'appuyant sur le suivi de deux paramètres principaux, la fraction biodégradable du carbone organique dissous (CODB) et la distribution des substances humiques et non humiques (établie sur la base d'un protocole de filtration en série sur résines XAD-8 et XAD-4 ).Dans le cas des eaux étudiées, la coagulation-floculation s'est accompagnée d'une diminution importante du COD, soit 38 à 70 %, impact qui se répercute dans des proportions équivalentes au niveau de sa fraction biodégradable soit 38 à 88%. Dans la majorité des cas, la clarification conduit à l'élimination préférentielle des substances humiques (définies comme hydrophobes), qui correspondent aux fractions de plus hautes masses moléculaires. Comparativement, et pour des taux supérieurs à 1 mg O3/mg C, l'ozonation entra"ne une réduction de la fraction des substances humiques qui se traduit par une augmentation de la fraction des substances non humiques et en particulier des substances hydrophiles non adsorbées sur résines XAD-8 et XAD-4. Cette modification, d'autant plus marquée que le taux d'ozone est important, s'accompagne d'une augmentation proportionnelle de la fraction biodégradable du COD. Le suivi en usine a montré que les taux d'ozone appliqués lors d'une interozonation modifient peu la nature du COD. Par contre, la filtration sur charbon actif en aval change de manière importante la distribution de la matière organique dissoute avec une augmentation relative de la fraction hydrophobe et des composés de faibles masses moléculaires apparentes (< 1 000 daltons).The goal of our study was to evaluate the impact of water treatment processes (i.e. coagulation- flocculation, ozonation and GAC filtration) on the natural organic matter (NOM) of various river and reservoir waters based on DOC and BDOC analyses and the determination of the humic/non humic NOM distribution (fractionation of the DOC at acidic pH using two successive XAD-8 and XAD-4 resin columns). Analyses carried out on ten French raw surface waters have shown that the BDOC fraction accounted for 11 to 38 % of the DOC. The humic/non humic distribution of the NOM varied slightly with the origin of the studied water. About 50 to 60 % of the DOC was found to be incorporated into the humic fraction (NOM adsorbed on the XAD-8 resin), the hydrophilic acids (adsorbed on the XAD-4 resin) accounted for 10 to 25 % of the DOC while the non adsorbed hydrophilic solutes (hydrophilic neutrals that constitute the XAD-8/XAD-4 effluent) represented 15 to 30 % of the DOC.Clarified water samples were collected from water treatment plants after coagulation/flocculation/sand filtration when no preoxidation was used. For water utilities which included a preoxidation step in their treatment process, raw water samples were coagulated and flocculated at a laboratory scale with Jar Test equipment using the same conditions (nature of the coagulant, pH, dose) as those used in the corresponding treatment plant. Globally, 38 to 70 % of the DOC and 38 to 88 % of the BDOC were removed during coagulation-flocculation, depending on the water site. In general, the humic/non humic NOM distribution of clarified waters showed a slight increase in the proportion of the non humic organic fraction as compared to raw waters, which indicates that humic substances (higher molecular weight organics) are preferentially removed during coagulation-flocculation. Ozonation experiments were carried out on a raw water and a clarified water sampled from the same water site using a semi batch reactor (ozone was generated from high purity oxygen). For both waters, very little variation of the humic/non humic NOM distribution was observed for applied ozone doses around 0.5 mg O3/mg C or below. For higher ozone doses, the NOM distribution was dramatically changed despite only a small reduction of the DOC. The large reduction of the humic fraction was followed by a proportional increase of the non adsorbed hydrophilic solute fraction (small reduction of the DOC). As the applied ozone dose was increased from 1 to 3 mg O3/mg DOC, the non-adsorbed hydrophilic solute fraction also increased. The shift from high molecular weight organics such as humic materials to more hydrophilic organics (high polarity and low molecular weight organic solutes) during ozonation has often been mentioned in the literature. The increase of the non humic substances was followed by an increase of the BDOC. Results have also shown that higher ozone doses yield higher BDOC. Similar observations could be made with the raw and the clarified water.As a conclusion of this work, samples were collected at the different steps of a water treatment plant (raw water, clarified water, intermediate ozonated water, GAC filtered water). The impact of coagulation/flocculation, and intermediate ozonation on BDOC and the humic/non humic NOM distribution confirmed the previous observations. The GAC filtration had a large impact on the DOC distribution while the BDOC was only slightly reduced. The NOM of the treated water was found to be more hydrophobic in nature with compounds that showed apparent molecular weights below 1 000 daltons (more than 80 % of the DOC)

    Destruction of chlorination byproducts with sulfite

    No full text

    Ultrafiltration of biologically treated domestic wastewater: How membrane properties influence performance

    Get PDF
    In this study, the impact of membrane properties on membrane fouling and permeate water quality was investigated. Short- and long-term laboratory scale experiments using four commercially available hollow fiber UF membranes were performed to study the impact of membrane properties on reversible and irreversible fouling. No significant differences in terms of permeate quality (i.e. biopolymer rejection) were observed over the four tested membranes. It was found that membrane characteristics including pore size, pore distribution and especially materials had a strong impact on the filtration performances in terms of both reversible and irreversible fouling. The short-term filtration tests showed that due to its specific hydrodynamic condition only the inside-out mode UF membrane was subjected to irreversible fouling. These data demonstrate the importance of membrane selection with appropriate operating conditions for optimum performances. The added value of membrane characterization to lab-scale filtration tests for membrane performance was discussed. © 2014 Elsevier B.V. All rights reserved

    SEM-FIB Characterization of Reverse Osmosis Membrane Fouling

    No full text

    Adsorption of humic acid onto a kaolinitic clay studied by high-resolution argon adsorption volumetry

    No full text
    28 ref. doi: 10.1180/0009855033840107International audienc

    Nanomechanical characterization of recalcitrant foulants and hollow fibemembranes in ultrafiltration systems

    No full text
    Long-term nanomechanical changes of polymeric ultrafiltration (UF) membranes caused by fouling/cleaning agents in water treatment are not well established in the literature. The goal of this study was to investigate the nanomechanical properties of polymeric UF hollow fiber membranes operating at a pilot-scale for 449 d and subjected to a low-quality feed (i.e., high turbidity/TOC content). Quantitative nanomechanical mapping technique was used to measure the deformation, dissipation, modulus, adhesion, and roughness of the polymeric structures of commercial Aquaflex virgin membranes, harvested membranes, and foulant layers. Results indicated that the recalcitrant and heterogeneous nature of the foulants absorbed on harvested membranes showed low elastic properties, and high modulus, adhesion, and roughness. The strong affinity of these foulants towards membrane surface would alter membrane characteristics and influence subsequent fouling behaviour. The cleaning process and extended operation did not significantly affect the nanomechanical properties of membranes. Despite the low-quality feed, the three modules were only subjected to 37 chemi-cal-enhanced backwashes and filtered a total volume of 2.155 m3. These results indicate the importance of operating conditions (i.e., frequency of backwash/cleaning/disinfection steps) and feed quality on the long-term changes of UF membranes and would assist in identifying research directions that are necessary to minimize membrane fouling/ageing
    corecore