1,237 research outputs found

    NEXUS/Physics: An interdisciplinary repurposing of physics for biologists

    Get PDF
    In response to increasing calls for the reform of the undergraduate science curriculum for life science majors and pre-medical students (Bio2010, Scientific Foundations for Future Physicians, Vision & Change), an interdisciplinary team has created NEXUS/Physics: a repurposing of an introductory physics curriculum for the life sciences. The curriculum interacts strongly and supportively with introductory biology and chemistry courses taken by life sciences students, with the goal of helping students build general, multi-discipline scientific competencies. In order to do this, our two-semester NEXUS/Physics course sequence is positioned as a second year course so students will have had some exposure to basic concepts in biology and chemistry. NEXUS/Physics stresses interdisciplinary examples and the content differs markedly from traditional introductory physics to facilitate this. It extends the discussion of energy to include interatomic potentials and chemical reactions, the discussion of thermodynamics to include enthalpy and Gibbs free energy, and includes a serious discussion of random vs. coherent motion including diffusion. The development of instructional materials is coordinated with careful education research. Both the new content and the results of the research are described in a series of papers for which this paper serves as an overview and context.Comment: 12 page

    Tunneling Conductance and Coulomb Blockade Peak Splitting of Two Quantum Dots Connected by a Quantum Point Contact

    Full text link
    By using bosonization method and unitary transformation, we give a general relation between the dimensionless tunneling conductance and the fractional Coulomb blockade conductance peak splitting which is valid both for weak and strong transmission between two quantum dots, and show that the tunneling conductance has a linear temperature dependence in the low energy and low temperature limit.Comment: 12 pages, Revtex, no figures, to appear in Phys. Rev.

    Mesoscopic Coulomb Blockade in One-channel Quantum Dots

    Full text link
    Signatures of "mesoscopic Coulomb blockade" are reported for quantum dots with one fully transmitting point-contact lead, T1 = 1, T2 << 1. Unlike Coulomb blockade (CB) in weak-tunneling devices (T1, T2 << 1), one-channel CB is a mesoscopic effect requiring quantum coherence. Several distinctive features of mesoscopic CB are observed, including a reduction in CB upon breaking time-reversal symmetry with a magnetic field, relatively large fluctuations of peak position as a function of magnetic field, and strong temperature dependence on the scale of the quantum level spacing.Comment: 12 pages, including 4 figure

    Cubic polynomials on Lie groups: reduction of the Hamiltonian system

    Full text link
    This paper analyzes the optimal control problem of cubic polynomials on compact Lie groups from a Hamiltonian point of view and its symmetries. The dynamics of the problem is described by a presymplectic formalism associated with the canonical symplectic form on the cotangent bundle of the semidirect product of the Lie group and its Lie algebra. Using these control geometric tools, the relation between the Hamiltonian approach developed here and the known variational one is analyzed. After making explicit the left trivialized system, we use the technique of Marsden-Weinstein reduction to remove the symmetries of the Hamiltonian system. In view of the reduced dynamics, we are able to guarantee, by means of the Lie-Cartan theorem, the existence of a considerable number of independent integrals of motion in involution.Comment: 20 pages. Final version which incorporates the Corrigendum recently published (J. Phys. A: Math. Theor. 46 189501, 2013

    Higher-Order Results for the Relation between Channel Conductance and the Coulomb Blockade for Two Tunnel-Coupled Quantum Dots

    Full text link
    We extend earlier results on the relation between the dimensionless tunneling channel conductance gg and the fractional Coulomb blockade peak splitting ff for two electrostatically equivalent dots connected by an arbitrary number NchN_{\text{ch}} of tunneling channels with bandwidths WW much larger than the two-dot differential charging energy U2U_{2}. By calculating ff through second order in gg in the limit of weak coupling (g0g \rightarrow 0), we illuminate the difference in behavior of the large-NchN_{\text{ch}} and small-NchN_{\text{ch}} regimes and make more plausible extrapolation to the strong-coupling (g1g \rightarrow 1) limit. For the special case of Nch=2N_{\text{ch}}=2 and strong coupling, we eliminate an apparent ultraviolet divergence and obtain the next leading term of an expansion in (1g)(1-g). We show that the results we calculate are independent of such band structure details as the fraction of occupied fermionic single-particle states in the weak-coupling theory and the nature of the cut-off in the bosonized strong-coupling theory. The results agree with calculations for metallic junctions in the NchN_{\text{ch}} \rightarrow \infty limit and improve the previous good agreement with recent two-channel experiments.Comment: 27 pages, 1 RevTeX file with 4 embedded Postscript figures. Uses eps

    Tunneling through a multigrain system: deducing the sample topology from the nonlinear conductance

    Full text link
    We study a current transport through a system of a few grains connected with tunneling links. The exact solution is given for an arbitrarily connected double-grain system with a shared gate in the framework of the orthodox model. The obtained result is generalized for multigrain systems with strongly different tunneling resistances. We analyse the large-scale nonlinear conductance and demonstrate how the sample topology can be unambiguously deduced from the spectroscopy pattern (differential conductance versus gate-bias plot). We present experimental data for a multigrain sample and reconstruct the sample topology. A simple selection rule is formulated to distinguish samples with spectral patterns free from spurious disturbance caused by recharging of some grains nearby. As an example, we demonstrate experimental data with additional peaks in the spectroscopy pattern, which can not be attributed to coupling to additional grains. The described approach can be used to judge the sample topology when it is not guaranteed by fabrication and direct imaging is not possible.Comment: 13 pages (including 8 figures

    Atmospheric Muon Flux at Sea Level, Underground, and Underwater

    Get PDF
    The vertical sea-level muon spectrum at energies above 1 GeV and the underground/underwater muon intensities at depths up to 18 km w.e. are calculated. The results are particularly collated with a great body of the ground-level, underground, and underwater muon data. In the hadron-cascade calculations, the growth with energy of inelastic cross sections and pion, kaon, and nucleon generation in pion-nucleus collisions are taken into account. For evaluating the prompt muon contribution to the muon flux, we apply two phenomenological approaches to the charm production problem: the recombination quark-parton model and the quark-gluon string model. To solve the muon transport equation at large depths of homogeneous medium, a semi-analytical method is used. The simple fitting formulas describing our numerical results are given. Our analysis shows that, at depths up to 6-7 km w. e., essentially all underground data on the muon intensity correlate with each other and with predicted depth-intensity relation for conventional muons to within 10%. However, the high-energy sea-level data as well as the data at large depths are contradictory and cannot be quantitatively decribed by a single nuclear-cascade model.Comment: 47 pages, REVTeX, 15 EPS figures included; recent experimental data and references added, typos correcte

    Using collective intelligence to identify barriers to teaching 12–19 year olds about the ocean in Europe

    Get PDF
    Since the degradation of the marine environment is strongly linked to human activities, having citizens who appreciate the ocean's influence on them and their influence on the ocean is important. Research has shown that citizens have a limited understanding of the ocean and it is this lack of ocean literacy that needs to change. This study maps the European landscape of barriers to teaching 12–19 year olds about the ocean, through the application of Collective Intelligence, a facilitation and problem solving methodology. The paper presents a meta-analysis of the 657 barriers to teaching about the ocean, highlighting how these barriers are interconnected and influence one another in a European Influence Map. The influence map shows 8 themes: Awareness and Perceived knowledge; Policies and Strategies; Engagement, formal education sector; the Ocean itself; Collaboration; Connections between humans and the ocean and the Blue Economy, having the greatest influence and impact on marine education. “Awareness and Perceived knowledge” in Stage 1, exerts the highest level of overall influence in teaching 12–19 year olds about the ocean. This map and study serves as a roadmap for policy makers to implement mobilisation actions that could mitigate the barriers to teaching about the ocean. Examples of such actions include free marine education learning resources such as e-books, virtual laboratories or hands-on experiments. Thus, supporting educators in taking on the challenge of helping our youth realise that the ocean supports life on Earth is essential for education, the marine and human well-being

    Corrections to the universal behavior of the Coulomb-blockade peak splitting for quantum dots separated by a finite barrier

    Full text link
    Building upon earlier work on the relation between the dimensionless interdot channel conductance g and the fractional Coulomb-blockade peak splitting f for two electrostatically equivalent dots, we calculate the leading correction that results from an interdot tunneling barrier that is not a delta-function but, rather, has a finite height V and a nonzero width xi and can be approximated as parabolic near its peak. We develop a new treatment of the problem for g much less than 1 that starts from the single-particle eigenstates for the full coupled-dot system. The finiteness of the barrier leads to a small upward shift of the f-versus-g curve at small values of g. The shift is a consequence of the fact that the tunneling matrix elements vary exponentially with the energies of the states connected. Therefore, when g is small, it can pay to tunnel to intermediate states with single-particle energies above the barrier height V. The correction to the zero-width behavior does not affect agreement with recent experimental results but may be important in future experiments.Comment: Title changed from ``Non-universal...'' to ``Corrections to the universal...'' No other changes. 10 pages, 1 RevTeX file with 2 postscript figures included using eps

    Dynamics of a mesoscopic qubit under continuous quantum measurement

    Get PDF
    We present the conditional quantum dynamics of an electron tunneling between two quantum dots subject to a measurement using a low transparency point contact or tunnel junction. The double dot system forms a single qubit and the measurement corresponds to a continuous in time readout of the occupancy of the quantum dot. We illustrate the difference between conditional and unconditional dynamics of the qubit. The conditional dynamics is discussed in two regimes depending on the rate of tunneling through the point contact: quantum jumps, in which individual electron tunneling current events can be distinguished, and a diffusive dynamics in which individual events are ignored, and the time-averaged current is considered as a continuous diffusive variable. We include the effect of inefficient measurement and the influence of the relative phase between the two tunneling amplitudes of the double dot/point contact system.Comment: 12 pages (one-column Revtex), 7 figure
    corecore