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Dynamics of a mesoscopic charge quantum bit under continuous quantum measurement
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We present the conditional quantum dynamics of an electron tunneling between two quantum dots subject to
a measurement using a low transparency point contact or tunnel junction. The double dot system forms a single
qubit and the measurement corresponds to a continuous in time readout of the occupancy of the quantum dot.
We illustrate the difference between conditional and unconditional dynamics of the qubit. The conditional
dynamics is discussed in two regimes depending on the rate of tunneling through the point contact: quantum
jumps, in which individual electron tunneling current events can be distinguished, and a diffusive dynamics in
which individual events are ignored, and the time-averaged current is considered as a continuous diffusive
variable. We include the effect of inefficient measurement and the influence of the relative phase between the
two tunneling amplitudes of the double dot/point contact system.
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I. INTRODUCTION

One of the key requirements for a physically impleme
ing a quantum computational scheme is the ability to read
a single quantum bit~qubit! with high efficiency.1 In an ion
trap implementation this problem has already been sol
using shelving spectroscopy.2 However in solid state
schemes implementing a high efficiency measurement of
charge or spin degree of freedom of a single electron~or
Cooper pair! will be very challenging. Various implementa
tions of quantum bits~qubits! and quantum gates for a solid
state quantum computer has been proposed.3–7 The condi-
tional dynamics of a single quantum particle~qubit! in a
single realization of continuous measurements is quite dif
ent from the ensemble average~unconditional! behavior that
is more familiar to the condensed matter physics commun
An apparatus by its very nature as a measurement de
must at least cause decoherence of the measured syste
the basis which diagonalizes the measured quantity. F
this perspective, the measurement apparatus behaves lik
environment, that is, a system with many degrees of freed
for which correlations between its subcomponents decay
idly with time. Indeed for a system to function as a measu
ment apparatus it must be composed of many degree
freedom.8 Thus every measured system is an open system
understand the influence of the detector~environment! on the
measured system, the conventional approach is to study
~unconditional! master equation of the reduced density m
trix. However, integrating or tracing out the environmen
~detector! degrees of the freedom to obtain the reduced d
sity matrix is equivalent to completely ignoring or averagi
over the results of all measurement records. This avera
means the detector is treated as a pure environment fo
system, rather than a measurement device which can pro
information about the change of the state of the qubit. On
other hand, for the purpose of quantum computing, it is
portant to understand how the quantum state of a single
bit, conditioned on a particular single realization of the me
surement, evolves in time. A number of questions need to
answered that cannot be answered if we only determine
ensemble averaged behavior of the measured qubit. Fo
0163-1829/2001/64~23!/235307~12!/$20.00 64 2353
-
ut

d

e

r-

y.
e,
in

m
an

m
p-
-
of

To

he
-
l
-

ng
he
ide
e
-
u-
-
e

he
x-

ample, in the case of a continuous measurement it is ne
sary to determine how long it takes for a confident deter
nation of the state of the qubit at the start of t
measurement, even if the qubit itself undergoes additio
coherent evolution during the measurement process. Fur
more it may be possible to consider adaptive measurem
schemes which take a given time continuous measurem
record, subject it to real-time signal processing, and th
change the way in which the measurement acts throug
feedback loop. Such schemes are already being impleme
in quantum optics and offer the promise of reaching sen
tivities at the quantum limit.9,10

We illustrate, in this paper, the difference between con
tional and unconditional~ensemble average! dynamics by
considering the problem of an electron tunneling betwe
two coherently coupled quantum dots~CQD’s!, a two-state
quantum system~qubit!, using a low-transparency point con
tact ~PC! or tunnel junction as a detector~environment! con-
tinuously measuring the position of the electron, schem
cally illustrated in Fig. 1. We assume strong inner and in

FIG. 1. Schematic representation of an electron tunneling
tween two coupled quantum dots~CQD’s!, a two-state quantum
system~qubit!, using a low-transparency point contact~PC! or tun-
nel junction as a detector~environment! continuously measuring the
position of the electron. HeremL and mR stand for the chemica
potentials in the left and right reservoirs, respectively.
©2001 The American Physical Society07-1
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dot Coulomb repulsion, so only one electron can occupy
CQD system. The logical qubit states in this case are, res
tively, the perfect localization of the electron charge state
one of the two CQD’s. A controlled-not-gate operation bas
on the charge qubit of two asymmetric CQD’s has been s
gested in Ref. 7. Experimentally, coherent coupling betw
two CQD’s has been reported. It has been shown11,12 that if
the inter-dot tunneling barrier is low and the strength of
coupling of two CQD’s is strong, the two CQD’s behave a
large single dot in a Coulomb blockade phenomenon. In
dition, the energy splitting between bonding and antibond
states of two CQD’s has been confirmed by microwave
sorption measurements.13,14The CQD system studied here
similar to the superconducting Cooper-pair-box cha
qubit5,15,16in that they both use charge degrees of freedom
qubit basis states. For the superconducting Cooper-pair
the charge on the island differs by the number of Coo
pairs times the charge 2e, compared to the electron chargee
in one of the two dots in the CQD system. The PC, cons
ered here, is a charge-sensitive detector. The tunneling
rier height or the current through the tunneling junction
the PC detector depends on the proximity of an exter
charge. Hence the study of charge measurements by a
detector is applicable to different types of charge qubit, s
as the CQD’s or the Cooper-pair box. The problem of
CQD system measured by a low-transparency PC has
extensively studied in Refs. 17–26. The case of meas
ments by a general quantum point contact detector with
bitrary transparency has also been investigated in Refs.
32. In addition, a similar system, a Cooper-pair-box qu
measured by a single electron transistor has been studie
Refs. 33, 22, 20, 23, 25, 34, and 35.

Korotkov19,21,25has obtained the Langevin rate equatio
for the CQD system measured by an ideal PC detector. Th
rate equations describe the random evolution of the den
matrix that both conditions, and is conditioned by, the
detector output. Recently, Ref. 26 presented aquantum
trajectory36–46measurement analysis of the same system.
found that the conditional dynamics of the CQD system c
be described by the stochastic Schro¨dinger equation for the
conditioned state vector, provided that the information c
ried away from the CQD system by the PC reservoirs can
recovered by the perfect detection of the measurements
also analyzed the localization rates at which the qubit
comes localized in one of the two states when the coup
frequencyV between the states is zero. We showed that
localization time discussed there is slightly different from t
measurement time defined in Refs. 33,22,23. The mixing
at which the two possible states of the qubit become mi
whenVÞ0 was calculated as well and found in agreem
with the result in Refs. 22 and 23. In this paper, we focus
the qubit dynamics conditioned on a particular realization
the actual measured current through the PC device. E
cially, we take into account the effect of inefficient measu
ment on the conditional dynamics and illustrate the con
tional quantum evolutions by numerical simulations.

The problem of a ‘‘nonideal’’ detector was discussed
Refs. 19–21. There the nonideality of the detector is m
eled as two ideal detectors ‘‘in parallel’’ with the output
23530
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the second detector inaccessible. The information loss is
to the interaction with the second detector, treated as a ‘‘p
environment’’ ~which does not affect the observed detec
current!. As a consequence, the decoherence rate,G tot , in
that case is larger than the decoherence rate for the PC a
environment alone,G tot2Gd5gd.0. Hence an extra deco
herence term,2gdrab , for example, is added in the rat
equationṙab . However, this approach does not account
the inefficiency in the measurements, which arises when
detector sometimes misses detection. In that case, the
still only one PC detector~environment! and disregarding all
measurement records leads toG tot5Gd . Furthermore, the de
tector current is affected and in fact reduced by the ine
ciency in the measurements.

In this paper, we take into account the effect of inefficie
measurement of the PC detector on the dynamics of the
bit. We also analyze the conditional qubit dynamics analy
cally and numerically. The different behavior of uncond
tional and conditional evolution is demonstrated. We pres
the conditional quantum dynamics over the full range of b
havior, from quantum jumps to quantum diffusion.26 In Refs.
17, 19, 21, and 25, the two tunneling amplitudes of t
CQD–PC model were assumed to be real. In Ref. 26,
relative phase between them was taken into account. H
we discuss and illustrate furthermore their influence on
qubit dynamics. In Sec. II, we describe the model Ham
tonian and the unconditional master equation. We then ob
in Sec. III the quantum-jump and quantum-diffusive, con
tional master equations for the case of inefficient measu
ments. Section IV is devoted to the analysis for the qu
dynamics. Numerical simulations of the conditional evo
tion are presented in this section. Finally, a short conclus
is given in Sec. V. In the Appendix, the stationary noi
power spectrum of the current fluctuations through the
barrier is calculated in terms of the quantum-jump form
ism.

II. UNCONDITIONAL MASTER EQUATION
FOR THE CQD AND PC MODEL

Following the model of Refs. 17, 19, 21, and 26, we d
scribe the whole system~see Fig. 1! by the following Hamil-
tonian:

H5HCQD1HPC1Hcoup, ~1!

where

HCQD5\@v1c1
†c11v2c2

†c21V~c1
†c21c2

†c1!#, ~2!

HPC5\(
k

~vk
LaLk

† aLk1vk
RaRk

† aRk!

1(
k,q

~TkqaLk
† aRq1Tqk* aRq

† aLk!, ~3!

Hcoup5(
k,q

c1
†c1~xkqaLk

† aRq1xqk* aRq
† aLk!. ~4!
7-2
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HCQD represents the effective tunneling Hamiltonian for t
measured CQD system~mesoscopic charge qubit!. The tun-
neling Hamiltonian for the PC detector is represented
HPC. Hereci (ci

†) and\v i represent the electron annihila
tion ~creation! operator and energy for a single electron st
in each dot, respectively. The coupling between these
dots is given by\V. Similarly, aLk ,aRk and\vk

L ,\vk
R are,

respectively, the electron annihilation operators and ener
for the left and right reservoir states at wave numberk.
H coup, Eq. ~4!, describes the interaction between the det
tor and the measured system, depending on which do
occupied. When the electron in the CQD system is locate
dot 1, the effective tunneling amplitude of the PC detec
changes fromTkq→Tkq1xkq .

The ~unconditional! zero-temperature,47 Markovian mas-
ter equation of the reduced density matrix for the CQD s
tem ~qubit! has been obtained in Refs. 17 and 26:

ṙ~ t !52
i

\
@HCQD,r~ t !#1D@T1Xn1#r~ t ! ~5a!

[Lr~ t !, ~5b!

wheren15c1
†c1 is the occupation number operator for dot

and the parametersT and X are given by D5uT u2
52peuT00u2gLgRV/\ and D85uT1X u252peuT00
1x00u2gLgRV/\. Here D and D8 are the average electro
tunneling rates through the PC barrier without and with
presence of the electron in dot 1, respectively,eV5mL
2mR is the external bias applied across the PC (mL andmR
stand for the chemical potentials in the left and right res
voirs, respectively!, T00 andx00 are energy-independent tun
neling amplitudes near the average chemical potential,
gL and gR are the energy-independent density of states
the left and right reservoirs. In Eq.~5a!, the
superoperator39,48,42D is defined as

D@B#r5J @B#r2A@B#r, ~6!

where

J @B#r5BrB†, ~7!

A@B#r5~B†Br1rB†B!/2. ~8!

Finally, Eq. ~5b! defines the Liouvillian operatorL.
Evaluating the density matrix operator in the logical qu

charge states,ua& and ub& ~i.e., perfect localization state o
the charge in dot 1 and dot 2, respectively!, as in Ref. 17, we
obtain

ṙaa~ t !5 iV@rab~ t !2rba~ t !#, ~9a!

ṙab~ t !5 iErab~ t !1 iV@raa~ t !2rbb~ t !#2~ uX u2/2!rab~ t !

1 i Im ~T * X!rab~ t !, ~9b!

where\E5\(v22v1) is the energy mismatch between th
two dots, Gd5uX u2/2 is the decoherence rate, andr i j (t)
5^ i ur(t)u j &. The relative phase between the two comp
tunneling amplitudes (T andX ) @the last term in Eq.~9b!#,
23530
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cause an effective shift in the energy mismatch in the unc
ditional dynamics. Physically, the presence of the electron
dot 1 ~stateua&) raises the effective tunneling barrier of th
PC due to electrostatic repulsion. As a consequence,
effective tunneling amplitude becomes lower, i.e.,D8
5uT 1X u2,D5uT u2. This sets a condition on the relativ
phaseu betweenX andT: cosu,2uX u/(2uT u).

III. CONDITIONAL MASTER EQUATION
FOR INEFFICIENT MEASUREMENT

Equation~5! describes the time evolution of reduced de
sity matrix when all the measurement results are ignored
averaged over. To make contact with a single realization
the measurement records and study the stochastic evolu
of the quantum state, conditioned on a particular meas
ment realization, the conditional master equation should
employed. The conditional master equations for a perf
detector in the quantum-jump and quantum diffusive ca
have been derived in Refs. 25 and 26. In this paper, to t
account the effect of the inefficiency in the measureme
which arises when the detector sometimes misses detec
we write first for the quantum-jump case that

@dNc~ t !#25dNc~ t !, ~10a!

E@dNc~ t !#5z Tr@ r̃1c~ t1dt!#5z@D1~D82D !^n1&c~ t !#dt.

~10b!

Here the subscriptc indicates that the quantity to which it i
attached is conditioned on previous measurement results
occurrences~detection records! of the electrons tunneling
through the PC barrier in the past. In Eq.~10!, dNc(t) is a
stochastic point process which represents the number~either
zero or one! of tunneling events seen in an infinitesimal tim
dt, ^n1&c(t)5Tr@n1rc(t)#, E@Y# denotes an ensemble ave
age of a classical stochastic processY, and

r̃1c~ t1dt!5J @T1Xn1#rc~ t !dt ~11!

is the unnormalized density matrix26 given the result of an
electron tunneling through the PC barrier at the end of
time interval@ t,t1dt). The factorz<1 represents the frac
tion of detections which are actually registered by the
detector. The valuez51 then corresponds to a perfect dete
tor or efficient measurement. By using the fact that curr
through the PC isi (t)5e dN(t)/dt, Eq. ~10b! with z51
states that the average current iseD when dot 1 is empty,
and iseD8 when dot 1 is occupied. In Ref. 25 the case
inefficient measurements is discussed in terms of insu
ciently small readout period. In other words, the bandwid
of the measurement device is not large enough to resolve
record every electron tunneling through the PC barrier.

By following the similar derivation as in Ref. 26, the sto
chastic quantum-jump master equation of the density ma
operator, conditioned on the observed event in the cas
inefficient measurement in timedt can be obtained:
7-3
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HSI-SHENG GOAN AND GERARD J. MILBURN PHYSICAL REVIEW B64 235307
drc~ t !5dNc~ t !FJ @T1Xn1#

P1c~ t !
21Grc~ t !1dtH 2A@T

1Xn1#rc~ t !1~12z!J @T1Xn1#rc~ t !

1zP1c~ t !rc~ t !2
i

\
@HCQD,rc~ t !#J , ~12!

where

P1c~ t !5D1~D82D !^n1&c~ t !. ~13!

In the quantum-jump case, in which individual electron tu
neling current events can be distinguished, the qubit s
@see Eq.~12!# undergoes a finite evolution~a quantum jump!
when there is a detection result@dNc(t)51# at randomly
determined times~conditionally Poisson distributed!.

The extension to the case of quantum diffusion can
carried out similarly as in Ref. 26. In this case, the elect
counts or accumulated electron number in timedt is consid-
ered as a continuous diffusive variable satisfying a Gaus
white noise distribution26,48

dN~ t !5$zuT u2@112e cosu^n1&c~ t !#1AzuT uj~ t !%dt,
~14!

wheree5(uX u/uT u)!1, u is the relative phase betweenX
andT, andj(t) is a Gaussian white noise characterized b

E@j~ t !#50, E@j~ t !j~ t8!#5d~ t2t8!. ~15!

HereE denotes an ensemble average. In obtaining Eq.~14!,
we have assumed that 2uT uuX ucosu@uX u2. Hence, for the
quantum-diffusive equations obtained later, we should
gard, to the order of magnitude, thatucosuu;O(1)@e
5(uX u/uT u) and usinuu;O(e)!1. The quantum-diffusive
conditional master equation for the case of inefficient m
surements can be found as

ṙc~ t !52
i

\
@HCQD,rc~ t !#1D@T1Xn1#rc~ t !

1j~ t !
Az

uT u @T * Xn1rc~ t !1X * Trc~ t !n1

22 Re~T * X!^n1&c~ t !rc~ t !#. ~16!

In arriving at Eq. ~16!, we have used the stochastic Iˆ

calculus49,50 for the definition of derivative asṙ(t)
5 limdt→0@r(t1dt)2r(t)#/dt. The conditional equations
~12! and~16!, under similar assumptions and approximatio
as in Ref. 26 but taking into account the effect of inefficie
measurement, are the main results in this paper. We
analyze the qubit dynamics in detail in Sec. IV using the
equations in terms of Bloch sphere variables@see Eqs.~20!
and ~21!#. In particular, the effect of inefficient measur
ments will be discussed in Sec. IV D. It is easy to see that
ensemble average evolution of Eq.~16! reproduces the un
conditional master equation~5a! by simply eliminating the
white noise term using Eq.~15!. Similarly, averaging Eq.
~12! over the observed stochastic process, by set
E@dNc(t)# equal to its expected value Eq.~10b!, gives the
23530
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unconditional, deterministic master equation~5a!. It is also
easy to verify that for zero efficiencyz50 @i.e., also
dNc(t)50#, the conditional equations~12! and ~16!, reduce
to the unconditional one~5a!. That is, the effect of averaging
over all possible measurement records is equivalent to
effect of completely ignoring the detection records or t
effect of no detection results being available.

To make the quantum-diffusive, conditional stochas
master equation~16! more transparent, we evaluate Eq.~16!
in the charge state basis as for Eq.~9! and obtain

ṙaa~ t !5 iV@rab~ t !2rba~ t !#

1A8zGd cosuraa~ t !rbb~ t !j~ t !, ~17a!

ṙab~ t !5 i ~E1uT uuX usinu!rab~ t !1 iV@raa~ t !2rbb~ t !#

2Gdrab~ t !1A2zGd $cosu@rbb~ t !2raa~ t !#

1 i sinu%rab~ t !j~ t !, ~17b!

where we have setuX u5A2Gd. Again, either by taking en-
semble average or for zero efficiencyz50, Eq.~17! reduces
to Eq. ~9!.

IV. CONDITIONAL DYNAMICS UNDER CONTINUOUS
MEASUREMENTS

As in Ref. 26, we represent the qubit density matrix e
ments in terms of Bloch sphere variables in the charge s
basis as

r~ t !5@ I 1x~ t !sx1y~ t !sy1z~ t !sz#/2, ~18!

where s i satisfies the properties of Pauli matrices. In th
representation, the variablez(t) represents the populatio
difference between the two dots. Especially,z(t)51 and
z(t)521 indicate that the electron is localized in dot 2 a
dot 1, respectively. The valuez(t)50 corresponds to an
equal probability for the electron to be in each dot. Genera
the product of the off-diagonal elements ofr(t) is smaller
than the product of the diagonal elements, leading to
relation x2(t)1y2(t)1z2(t)<1. When r(t) is represented
by a pure state, the equal sign holds. In this case, the sys
state can be characterized by a point (x,y,z) on the Bloch
unit sphere.

The master equations written as a set of coupled stoc
tic differential equations in terms of the Bloch sphere va
ables in Ref. 26 are under the assumptions of real tunne
amplitudes and perfect~efficient! measurements. Here w
include the effect of inefficient measurement and the infl
ence of the relative phase between the two tunneling am
tudes into the coupled equations. The unconditional ma
equation~5a! is equivalent to the following equations:

dx~ t !

dt
52~E1uT uuX usinu!y~ t !2Gdx~ t !, ~19a!

dy~ t !

dt
5~E1uT uuX usinu!x~ t !22Vz~ t !2Gdy~ t !,

~19b!
7-4
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dz~ t !

dt
52Vy~ t !. ~19c!

We find that the quantum-diffusive, conditional master eq
tion ~16! can be written as

dxc~ t !

dt
52~E1uT uuX usinu!yc~ t !2Gdxc~ t !

1A2zGd@2sinuyc~ t !1cosuzc~ t !xc~ t !#j~ t !,

~20a!
es
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dyc~ t !

dt
5~E1uT uuX usinu!xc~ t !22Vzc~ t !2Gdyc~ t !

1A2zGd@sinuxc~ t !1cosuzc~ t !yc~ t !#j~ t !,

~20b!

dzc~ t !

dt
52Vyc~ t !2A2zGd cosu@12zc

2~ t !#j~ t !.

~20c!

For the quantum-jump, conditional master equation~12!, we
obtain
dxc~ t !5dtS 2@E1~12z!uT uuX usinu#yc~ t !2~12z!Gdxc~ t !2
z~D82D !

2
zc~ t !xc~ t ! D2dNc~ t !

3S 2uT uuX usinuyc~ t !1@2Gd2~D82D !zc~ t !#xc~ t !

2D1~D82D !@12zc~ t !#
D , ~21a!

dyc~ t !5dtS @E1~12z!uT uuX usinu#xc~ t !2~12z!Gdyc~ t !22Vzc~ t !2
z~D82D !

2
zc~ t !yc~ t ! D2dNc~ t !

3S 22uT uuX usinuxc~ t !1@2Gd2~D82D !zc~ t !#yc~ t !

2D1~D82D !@12zc~ t !#
D , ~21b!

dzc~ t !5dtS 2Vyc~ t !1
z~D82D !

2
@12zc

2~ t !# D2dNc~ t !S ~D82D !@12zc
2~ t !#

2D1~D82D !@12zc~ t !#
D . ~21c!
n of
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As expected, Eq.~20! averaged over the white noise reduc
to Eq. ~19!, provided thatE@xc(t)#5x(t) as well as similar
replacements are performed foryc(t) andzc(t). Similarly, by
using Eq.~10b!, the ensemble average of Eq.~21! reduces to
the unconditional equation~19!. One can also observe tha
for zero efficiencyz50, the conditional equations~21! and
~20!, reduce to the unconditional equation~19! as well. Next
we analyze the qubit dynamics in detail and present the
merical simulations for the time evolution using Eqs.~20!
and~21!. Part of the results in Sec. IV A have been repor
in Ref. 51.

A. From quantum jumps to quantum diffusion

Figure 2~a! shows the unconditional~ensemble average!
time evolution of the population differencez(t) with the ini-
tial qubit state being in stateua&, i.e., dot 1 is occupied. The
unconditional population differencez(t), rises from21, un-
dergoing some oscillations, and then tends towards zer
steady~maximally mixed! state. On the other hand, the co
ditional time evolution, conditioned on one possible ind
vidual realization of the sequence of measurement res
behaves quite differently. We consider first the situati
whereD85uT1X u250, discussed in Ref. 18. In this cas
due to the electrostatic repulsion generated by the elect
u-

d

a

ts,
,

n,

the PC is blocked~no electron is transmitted! when dot 1 is
occupied. As a consequence, whenever there is a detectio
an electron tunneling through the PC barrier, the qubit s
is collapsed into stateub&, i.e., dot 2 is occupied. The
quantum-jump conditional evolution shown in Fig. 2~b! @us-
ing the same parameters and initial condition as in Fig. 2~a!#
is rather obviously different from the unconditional one
Fig. 2~a!. The conditional time evolution is not smooth, b
exhibits jumps, and it does not tend towards a steady s
One can see that initially the system starts to undergo
oscillation. As the population differencezc(t) changes in
time, the probability for an electron tunneling through the P
barrier increases. This oscillation is then interrupted by
detection of an electron tunneling through the PC barr
which bringzc(t) to the value 1, i.e., the qubit state is co
lapsed into stateub&. Then the whole process starts aga
The randomly distributed moments of detections,dNc(t),
corresponding to the quantum jumps in Fig. 2~b! is illus-
trated in Fig. 2~c!. Although little similarity can be observed
between the time evolution in Figs. 2~a! and 2~b!, averaging
over many individual realizations shown in Fig. 2~b! leads to
a closer and closer approximation of the ensemble averag
Fig. 2~a!.

Next we illustrate how the transition from the quantum
jump picture to the quantum-diffusive picture takes place.
7-5
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FIG. 2. Illustration for differ-
ent behaviors between uncond
tional and conditional evolutions
The initial qubit state isua&. The
parameters arez51, E50, u5p,
uT u25uX u25V, and time is in
units of V21. ~a! Unconditional,
ensemble-averaged time evolutio
of z(t), which exhibits some os-
cillation and then approaches
zero steady state value.~b! Condi-
tional evolution ofzc(t). The qu-
bit starts an oscillation, which is
then interrupted by a quantum
jump @corresponding to a detec
tion of an electron passing
through the PC barrier in~c!#. Af-
ter the jump, the qubit state is re
set to ub& and a new oscillation
starts. ~c! Randomly distributed
moments of detections, which cor
respond to the quantum jump
in ~b!.
iv
ri

ro
i

s.
s

n

of
cu-
Ref. 26 and Sec. III, we have seen that the quantum-diffus
equations can be obtained from the quantum-jump desc
tion under the assumption ofuT u@uX u. In Figs. 3~a!–3~d!
we plot conditional, quantum-jump evolution ofzc(t) and
the corresponding moments of detectionsdNc(t), with dif-
ferent (uT u/uX u) ratios. Each jump~discontinuity! in the
zc(t) curves corresponds to the detection of an elect
through the PC barrier. One can clearly observes that w
23530
e
p-

n
th

increasing (uT u/uX u) ratio, the number of jumps increase
The amplitudes of the jumps ofzc(t), however, decrease
from D850 with the certainty of the qubit being in stateub&
to the case of (D2D8)!(D1D8) with a smaller probability
of finding the qubit in stateub&. Nevertheless, the populatio
difference zc(t) always jumps up sinceD5uT u2.D8
5uT 1X u2. In other words, whenever there is a detection
an electron passing through PC, dot 2 is more likely oc
.

n

t

f

t

.

FIG. 3. Transition from quan-
tum jumps to quantum diffusion
The initial qubit state isua&. The
parameters arez51, E50, u5p,
uX u25V, and time is in units of
V21. ~a!–~d! are the quantum-
jump, conditional evolutions of
zc(t), and corresponding detectio
moments with differentuT u/uX u
ratios: ~a! 1, ~b! 2, ~c! 3, ~d! 5.
With increasing uT u/uX u ratio,
jumps become more frequent bu
smaller in amplitude.~e! Repre-
sents the conditional evolutions o
zc(t) in the quantum diffusive
limit. The variablej(t), appearing
in the expression of curren
through PC in quantum-diffusive
limit, is a Gaussian white noise
with zero mean and unit variance
7-6
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FIG. 4. Illustration of the
quantum Zeno effect. Both condi
tional ~in solid line! and uncondi-
tional ~in dashed line! evolutions
of the population difference for
different ratios of ~a! (Gd /V)
50.04, ~b! 2, ~c! 8, are shown.
The initial qubit state isua&. The
other parameters arez51, E50,
u5p, uT u2520V, and time is in
units of (2V)21. Increasing
(Gd /V) ratio increases the period
of coherent oscillations betwee
the qubit states, while the time o
a transition ~switching time! de-
creases.
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pied than dot 1. The case for quantum diffusion using
~20! is plotted in Fig. 3~e!. In this case, very small jump
occur very frequently. We can see that the behavior ofzc(t)
for uT u55uX u in the quantum-jump case shown in Fig. 3~d!
is already very close to that of quantum diffusion shown
Fig. 3~e!. To minimize the number of controllable variable
the same randomness is applied to produce the quan
jump, conditional evolutions in Figs. 3~a!–3~d!. This, how-
ever, does not mean that they would have had the same
tection output,dNc(t). The number of tunneling events i
time dt, dNc(t), does not depend on the randomness alo
It also depends onuT u, uX u, and u, and has to satisfy Eq
~10b! in a self-consistent manner. In fact, it both conditio
and is conditioned by the conditional qubit density matr
Note that the unconditional evolution does not depend on
parameteruT u when u5p @see Eq.~19!#. This implies that
depending on the actual measured detection events, diffe
measurement schemes~measurement devices with differe
tunneling barriers or different values ofuT u when u5p)
give different conditional quantum evolutions. But the
would have the same ensemble average property if other
rameters and the initial condition are the same. Hence, a
aging over all possible realizations, for each measurem
scheme in Fig. 3, will lead to the same ensemble aver
behavior shown in Fig. 2~a!.

B. Quantum Zeno effect

The quantum Zeno effect can be naturally described
the conditional dynamics. The case for quantum diffus
has been discussed in Refs. 19 and 21. Here, for comp
ness, we discuss the quantum-jump case. The quantum
effect states that repeated observations of the system
down transitions between quantum states due to the coll
23530
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of the wave function into the observed state. Alternative
the interaction with one measurement apparatus destroys
quantum coherence~oscillations! betweenua& and ub& at a
rate that is much faster than the tunneling rateV. For fixed
V, uT u, and u, by increasing the interaction with the P
detectoruX u5A2Gd, we increase the number and amplitu
of jumps and hence the probability of the wave functi
being collapsed to the localized state. The time evolutions
the population differencezc(t) for different ratios of (Gd /V)
are shown in Fig. 4. Here, the initial qubit state isua&, and
other parameters arez51,E50,u5p,uT u2510V. We can
observe that the period of coherent oscillations between
two qubit states increases with increasing (Gd /V), while the
time of a transition~switching time! decreases. In the limit o
vanishingV, a transition from one qubit state to the oth
state takes a time~switching time! of order of localization
time,26 1/g loc

jump5(D1D8)/@Gd(AD1AD8)2#. In the param-
eter regime of Fig. 4~c! (Gd /V58), this time is still much
smaller than the average time between state-changing tra
tions ~period of oscillations! due to V, i.e., the mixing
time,26 1/gmix5Gd /(4V2). Hence, we can already see fro
Fig. 4~c! for Gd /V58 that very frequent repeated measu
ments would tend to localize the system.

The ensemble average behavior ofz(t) is also shown in
dashed line in Fig. 4. IfE50 and initially the electron is in
dot 1, from the solution of Eq.~9!, the probabilityraa(t)
5@12z(t)#/2 can be written as

raa~ t !5
1

2 H 11e2Gdt/2FcoshS VG

2
t D1

Gd

VG
sinhS VG

2
t D G J ,

~22!

where VG5AGd
22(4V)2. In the Appendix, the stationary

noise power spectrum of the current fluctuations through
7-7
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FIG. 5. A plot of the noise
power spectrum of the current
normalized by the shot noise leve
for different ratios of~a! (Gd /V)
50.04,~b! 2, ~c! 8. All the param-
eters are the same as the corr
sponding ones in Fig. 4. For sma
(Gd /V) ratio, two sharp peaks ap
pear in the noise power spectrum
as shown in~a!. In ~b!, a double
peak structure is still visible, indi-
cating that coherent tunneling be
tween the two qubit states still ex
ists. In the classical, incoheren
regime Gd>4V, only one single
peak appears, as shown in~c!.
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PC barrier is calculated for the case ofE50 and the result
can be written as:21

S~v!5S01
4V2~D i !2Gd

~v224V2!21Gd
2v2

. ~23!

where S052ei`5e2z(D81D) represents the shot nois
i `5ez(D81D)/2 is the steady-state current andD i 5ez(D
2D8) represents the difference between the two aver
currents. ForGd,4V, raa(t) shows the damped oscillator
behavior in the immediate time regime@see dashed line in
Figs. 4~a! and 4~b!#. In this case, the spectrum has a dou
peak structure, indicating that coherent tunneling is tak
place between the two qubit states. This is illustrated in F
5~a! and 5~b!. WhenGd>4V, raa(t) does not oscillate bu
decays in time purely exponentially, saturating at the pr
ability 1/2 @see dashed line in Fig. 4~c!#. This corresponds to
a classical, incoherent behavior. In this case, only a sin
peak, centering atv50, appears in the noise spectrum,
illustrated in Fig. 5~c!. The evolution ofzc(t) in Fig. 4~c!, is
one of the possible conditional evolutions in this parame
regime (Gd /V58). In this parameter regimeGd>4V, the
conditional evolutionzc(t) behaves very close to a probab
listic jumping or random telegraph process. After ensem
averaging over all possible realizations of such conditio
evolutions, one would then obtain the classical, incoher
behavior.

C. Relative phase of the tunneling amplitudes

The relative phase between the two complex tunne
amplitudes produces effects on both conditional and unc
ditional dynamics of the qubit. In the following, we consid
23530
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the case thatz51 andE50. From Eq.~21!, after each jump
the imaginary part of the product (T * X) seems to cause a
additional rotation around thez axis in the Bloch sphere, bu
does not directly change the population probabilityzc(t) of
the qubit. However, the actual conditional evolution of t
Bloch sphere variables is complicated. It is stochastic a
nonlinear, and depends on the relative phase of the tunne
amplitudes in a nontrivial way. Nevertheless, after ensem
average, the imaginary part of (T * X) generates an effective
shift in the energy mismatch of the qubit states@see Eq.~9!#.

There are situations in which the effect of the relati
phase of the tunneling amplitudes can be easily seen. Fz
51 and E50, if the tunneling amplitudes are real, i.e.,u
5p, and the initial conditionxc(0)50, then the time evo-
lution of xc(t), from Eq. ~21!, does not change and remain
at the value 0 at all times. But ifuÞp or sinuÞ0, the
conditional evolution ofxc(t) behaves rather differently. I
changes after the first detection~quantum jump! takes place.
Figure 6 shows the evolutions of the Bloch variabl
xc(t),yc(t),zc(t) with the same initial condition~the qubit
being in ua&) and parameters but different relative phas
u5p for ~a!–~c! andu5cos21(uX u/uT u) for ~d!–~f!. We can
clearly see quite different behaviors ofxc(t) in these two
cases. The asymmetry of the electron population inzc(t),
due to effectively generated energy mismatch in the sec
case in Fig. 6~f!, can be roughly observed. The effect of th
relative phase is small in the case of quantum diffusion.
noted in Sec. III, in order for the quantum-diffusive equ
tions to be valid, we should regard, to the order of mag
tude, thatucosu u;O(1) and usinu u;O(e). This implies that
in this caseu'p. Hence the effect of the relative phase
small and the conditional dynamics does not deviate m
from the case that the tunneling amplitudes are assume
be real.19,21,25
7-8
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FIG. 6. Effect of relative phase
on the qubit dynamics. The condi
tional evolutions ofxc(t), yc(t),
and zc(t) with the same initial
condition ~the qubit being inua&)
and parameters (z51, E50, u
5p, uT u254uX u254V), but dif-
ferent relative phases are show
~a!–~c! for u5p and ~d!–~f! for
u5cos21(uX u/uT u). The relative
phase causes quite different evol
tions for xc(t).
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D. Inefficient measurement and non-ideality

We have shown26 that forz51, the conditional time evo-
lution of the qubit can be described by a ket state vec
satisfying the stochastic Schro¨dinger equation. It is then ob
vious that perfect detection or efficient measurement p
serves state purity for a pure initial state. However, the in
ficiency and nonideality of the detector spoils this pictu
The decrease in our knowledge of the qubit state lead
partial decoherence for the qubit state. We next find the
tial decoherece rate introduced in this way.

The stochastic differential equations in the form of Iˆ
calculus49,50 have the advantage that it is easy to see that
ensemble average of the conditional equations over the
dom processj(t) leads to the unconditional equations. How
ever, it is not a natural physical choice. For example, foz
51, the term2Gdrab(t) in Eq. ~17b! does not really cause
decoherence of the conditional qubit density matrix. It si
ply compensates the noise term due to the definition of
rivative in Itô calculus. Hence, in this case the condition
evolution ofrab(t) does not really decrease in time expone
tially. To find the partial decoherence rate generated by in
ficiency z,1, we transform Eq.~17b! into the form of Stra-
tonovich calculus.49,50 We then obtain foru5p:

ṙab~ t !5 iErab~ t !1 iV@raa~ t !2rbb~ t !#

2@rbb~ t !2raa~ t !#
A2Gd

euT u @ i ~ t !2 i 0#rab~ t !

2~12z!Gdrab~ t !, ~24!

where i (t)2 i 05euT u$zA2Gd@122raa(t)#1Azj(t)%. Here
we have used the following relations: the conditional curr
23530
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i (t)5edN(t)/dt with dN(t) given by Eq.~14! and the av-
erage currenti 05ez(D1D8)/2, where D5uT u2 and D8
5uT u222uT uuX u in the quantum-diffusive limit. In this
form, Eq.~24! elegantly shows how the qubit density matr
is conditioned on the measured current. We find that the
term in Eq. ~24! is responsible for decoherence. In oth
words, the partial decoherence rate for an individual reali
tion of inefficient measurements is (12z)Gd . For a perfect
detectorz51, this decoherence rate vanishes and the co
tional rab(t), as expected, does not decay exponentially
time. Similar conclusion could be drawn from Eq.~21! for
the quantum-jump case. Foru5p, the off-diagonal variables
xc(t) and yc(t) seem to decrease in time with the rate
2z)Gd .

In Bloch sphere variable representation, we can use
quantityPc(t)5xc

2(t)1yc
2(t)1zc

2(t) as a measure of the pu
rity of the qubit state, or equivalently as a measure of h
much information the conditional measurement record gi
about the qubit state. If the conditional state of the qubit i
pure state thenPc(t)51; if it is a maximally incoherent
mixed state thenPc(t)50. We plot in Fig. 7 the quantum
jump, conditional evolution of the purityPc(t) for different
inefficiencies,z51,0.6,0.2~in solid line!, and 0 ~in dotted
line!. Figure 7~a! is for an initial qubit state being in a pur
state ua&, while Fig. 7~b! is for a maximally mixed initial
state. We can see from Fig. 7~a! that the purityPc(t)51 at
all times forz51, while it hardly or not at all reaches 1 fo
almost all time forz,1. This means that partial informatio
about the changes of the qubit state is lost irretrievably
inefficient measurements. In addition, roughly speaking,
overall behavior ofPc(t) decreases with decreasingz. This
indicates that after being averaged over a long period
time, ^Pc(t)& t would also decrease with decreasingz. For
7-9
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FIG. 7. Effect of inefficiency
on the state purity. The quantum
jump, conditional evolution of the
purity Pc(t) for different ineffi-
ciencies, z51,0.6,0.2 ~in solid
line!, and 0 ~in dotted line! are
plotted in ~a! for an initial qubit
state being in a pure stateua&, ~b!
for a maximally mixed initial
state. The other parameters areE
50, u5p, uT u254uX u254V.
The purity-preserving conditiona
evolution for a pure initial state,
and gradual purification for a non
pure initial state forz51 are il-
lustrated. However, the complet
purification of the qubit state can
not be achieved forz,1.
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z50, the evolution ofP(t) becomes smooth and tends t
ward the value zero~the maximally mixed steady state!. For
a nonpure initial state@see Fig. 7~b!#, the qubit state is even
tually collapsed towards a pure state and then remains
pure state forz51. But the complete purification of the qub
state cannot be achieved forz,1. As in Figs. 3~a!–3~d!, the
same randomness has been applied to generate the qua
jump, conditional evolution in Figs. 7~a! and 7~b!. Note that
the only difference between evolution in Fig. 7~a! and the
corresponding one in Fig. 7~b! is the different initial states
So when the qubit density matrix in Fig. 7~b! gradually
evolves into the same state as in Fig. 7~a!, the corresponding
Pc(t) in Fig. 7~b! would then follow the same evolution as
Fig. 7~a!. This behavior can be observed in Fig. 7. T
purity-preserving conditional evolution for a pure initi
state, and gradual purification for a nonpure initial state
an ideal detector have been discussed in Refs. 19–21,2
the quantum-diffusive limit.

The nonideality of the PC detector is modeled in Re
19–21,24 by another ideal detector ‘‘in parallel’’ to the orig
nal one but with inaccessible output. We can add, as in R
19–21,24, an extra term,2gdrab(t), to Eq. ~24! to account
for the ‘‘nonideality’’ of the detector. The ideal factorh in-
troduced there19–21,24can be modified to take account of in
efficient measurement discussed here. We find

h512
G

G tot
5

zGd

Gd1gd
, ~25!

whereG5(12z)Gd1gd andG tot5Gd1gd . For gd50, we
haveh5z. In Ref. 25, inefficient measurement is discuss
in terms of insufficiently small readout period. As a resu
the information about the tunneling times of the electro
passing through the PC barrier is partially lost.
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V. CONCLUSION

We have obtained the quantum-jump and quantu
diffusive, conditional master equations, taking into acco
the effect of inefficient measurementsz<1 under the weak
system-environment coupling and Markovian approxim
tions. These conditional master equations describe the
dom evolution of the measured qubit density matrix, whi
both conditions and is conditioned on, a particular realizat
of the measured current. If and only if detections are perf
~efficient measurement!, i.e., z51, are the stochastic maste
equations for the conditioned density matrix operators~12!
and ~16!, equivalent to the stochastic Schro¨dinger equations
@Eqs. ~35! and ~41! of Ref. 26, respectively# for the condi-
tioned states. If the detection is not perfect and some in
mation about the system isunrecoverable, the evolution of
the system can no longer be described by a pure state ve
For the extreme case of zero efficiency detection, the in
mation ~measurement results at the detector! carried away
from the system to the reservoirs is~are! completely ignored,
so that the stochastic master equations~12! and ~16! after
being averaged over all possible measurement records
duces to the unconditional, deterministic master equa
~5a!, leading to decoherence for the system.

We have used the derived conditional equations to a
lyze the conditional qubit dynamics in detail and illustra
the conditional evolution by numerical simulations. Spec
cally, the conditional qubit dynamics evolving from quantu
jumps to quantum diffusion has been presented. Furt
more, we have described the quantum Zeno effect in term
the quantum-jump conditional dynamics. We have calcula
the stationary noise power spectrum of the current fluct
tions through the PC barrier in terms of the quantum-ju
formalism. We have also discussed the effect of ineffici
7-10
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measurement and the influence of relative phase betwee
two tunneling amplitudes on the qubit dynamics.
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APPENDIX: CALCULATION OF THE NOISE POWER
SPECTRUM OF THE CURRENT FLUCTUATIONS

In this Appendix, we calculate the stationary noise pow
spectrum of the current fluctuations through the PC wh
there is the possibility of coherent tunneling between the
qubit states. Usually one can calculate this noise power s
trum using the unconditional, deterministic master equat
approach, which gives only the average characteristics.
however, calculate it through the stochastic formalism p
sented here. The fluctuations in the observed current,i (t),
are quantified by the two-time correlation function:

G~t!5E@ i ~ t1t!i ~ t !#2E@ i ~ t1t!#E@ i ~ t !#. ~A1!

The noise power spectrum of the current is then given b

S~v!52E
2`

`

dt G~t!e2 ivt. ~A2!

The ensemble expectation values of the two-time correla
function for the current in the case of quantum diffusion h
been calculated in Ref. 21. Here we will present t
quantum-jump case. The current in this case is given
i (t)5e dN(t)/dt. We will follow closely the calculation in
the Appendix of Ref. 39 to calculate the two-time correlati
function, E@dNc(t1t)dN(t)#. First we consider the cas
whent@dt.0, wheredt is the minimum time step consid
ered. SincedN(t) is a classical point process, it is either ze
or one. As a result,E@dNc(t1t)dN(t)# is nonvanishing
only if there is an electron-tunneling event inside each
these two infinitesimal time intervals,@ t,t1dt# and @ t1t,t
1t1dt#. Hence, we can write

E@dNc~ t1t!dN~ t !#5Prob@dN~ t !

51#E@dNc~ t1t!udN(t)51#, ~A3!

where the subscript to the vertical line is the conditi
for which the subscript ondNc(t1t) exists. From Eqs.
~10b! and ~11!, we have Prob@dN(t)51#5z Tr@ r̃1(t1dt)#
and E@dNc(t 1 t)udN(t)51# 5 z Tr$J @T 1 Xn1#E@r1c(t
1t)udN(t)51#%. Using the fact thatE@rc(t)#5r(t) and Eqs.
~5b! and ~11!, we can write

E@r1c~ t1t!udN(t)51#5eL(t2dt)r̃1~ t1dt!/Tr@ r̃1~ t1dt!#

5zeL(t2dt)$J @T 1Xn1#r~ t !dt%/

Tr@ r̃1~ t1dt!#. ~A4!
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Hence, to leading order indt, we obtain fort.0:

E@dNc~ t1t!dN~ t !#5z2dt2 Tr@J @T 1Xn1#

3eLt$J @T 1Xn1#r~ t !%#.

~A5!

For t50, we have, from Eq.~10!, that

E@dN~ t !dN~ t !#5E@dN~ t !#5z@D1~D82D !^n1&~ t !#dt.
~A6!

For short times, this term dominates and we may reg
dN(t)/dt asd-correlated noise for a suitably definedd func-
tion. Thus the current-current two-time correlation functi
for t>0 can be written as

E@ i ~ t1t!i ~ t !#5EFdNc~ t1t!

dt

dN~ t !

dt G
5e2z$D1~D82D !Tr@n1r~ t !#%

3d~t!1z2 Tr@J @T 1Xn1#

3eLt$J @T 1Xn1#r~ t !%#. ~A7!

In this form, we have related the ensemble averages of c
sical random variable to the quantum averages with res
to the qubit density matrix. The caset<0 is covered by the
fact that the current–current two-time correlation function
G(t) is symmetric int, i.e., G(t)5G(2t).

Next we calculate steady-stateG(t) and S(v). We can
simplify Eq. ~A7! using the following identities for an arbi
trary operatorB: Tr@J @n1#B#[Tr@n1B#, Tr@eLtB#5Tr@B#,
and Tr@BeLtr`#5Tr@Br`#, where thè subscript indicates
that the system is at the steady state and the steady-
density matrixr` is a maximally mixed state. Hence w
obtain the steady-stateG(t) for t>0 as

G~t!5ei`d~t!1e2z2~D82D !2

3$Tr@n1eLt@n1r`#2Tr@n1r`#2%, ~A8!

where the steady-state average currenti `5ez(D1D8)/2.
The first term in Eq.~A8! represents the shot noise comp
nent. It is easy to evaluate Eq.~A8! analytically for E50
case. The case for the asymmetric qubit,EÞ0, can be calcu-
lated numerically. Evaluating Eq.~A8! for E50, we find

G~t!5ei`d~t!1
~D i !2

4 S m1em2t2m2em1t

m12m2
D , ~A9!

wherem652(Gd/2)6A(Gd/2)224V2, and we have repre
sentedD i 5ez(D2D8) as the difference between the tw
average currents. After Fourier transform following from E
~A2!, the power spectrum of the noise is then obtained as
expression of Eq.~23!. Note that from Eq.~23!, the noise
spectrum atv52V for u5p, i.e., real tunneling amplitudes
can be written as

S~2V!2S0

S0
52z

~AD1AD8!2

~D1D8!
, ~A10!
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whereS052ei`5e2z(D81D) represents the shot noise. I
obtaining Eq.~A10!, we have used the relationGd5(AD
2AD8)2/2 for the case of real tunneling amplitudes. In t
quantum-diffusive limit uT u@uX u or (D1D8)@(D2D8),
this ratio@S(2V)2S0#/S0→4z, independent21 of the values
.

.

c

v

23530
of V and Gd . These results forz51 and in the limit of
quantum diffusion are consistent with those derived in R
21 using both the unconditional master equation appro
and conditional stochastic formalism with white noise c
rent fluctuations for an ideal detector.
ys.
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