6,058 research outputs found
Coal-rock interface detector
A coal-rock interface detector is presented which employs a radioactive source and radiation sensor. The source and sensor are separately and independently suspended and positioned against a mine surface of hydraulic pistons, which are biased from an air cushioned source of pressurized hydraulic fluid
Sources Of Student Engagement In Introductory Physics For Life Sciences
We explore the sources of student engagement with curricular content in an Introductory Physics for Life Science (IPLS) course at Swarthmore College. Do IPLS students find some life-science contexts more interesting than others, and, if so, what are the sources of these differences? We draw on three sources of student data to answer this question: (1) quantitative survey data illustrating how interested students were in particular contexts from the curriculum, (2) qualitative survey data in which students describe the source of their interest in these particular contexts, and (3) interview data in which students reflect on the contexts that were and were not of interest to them. We find that examples that make interdisciplinary connections with students’ other coursework in biology and chemistry, and examples that make connections to what students perceive to be the “real world,” are particularly effective at fostering interest. More generally, students describe being deeply engaged with contexts that foster a sense of coherence or have personal meaning to them. We identify various “engagement pathways” by which different life-science students engage with IPLS content, and suggest that a curriculum needs to be flexible enough to facilitate these different pathways
Validating Forward Modeling and Inversions of Helioseismic Holography Measurements
Here we use synthetic data to explore the performance of forward models and
inverse methods for helioseismic holography. Specifically, this work presents
the first comprehensive test of inverse modeling for flows using
lateral-vantage (deep-focus) holography. We derive sensitivity functions in the
Born approximation. We then use these sensitivity functions in a series of
forward models and inversions of flows from a publicly available
magnetohydrodynamic quiet-Sun simulation. The forward travel times computed
using the kernels generally compare favorably with measurements obtained by
applying holography, in a lateral-vantage configuration, on a 15-hour time
series of artificial Dopplergrams extracted from the simulation. Inversions for
the horizontal flow components are able to reproduce the flows in the upper 3Mm
of the domain, but are compromised by noise at greater depths.Comment: accepted for publication by the Astrophysical
Eimeria tenella protein trafficking: differential regulation of secretion versus surface tethering during the life cycle
Eimeria spp. are intracellular parasites that have a major impact on poultry. Effective live vaccines are available and the development of reverse genetic technologies has raised the prospect of using Eimeria spp. as recombinant vectors to express additional immunoprotective antigens. To study the ability of Eimeria to secrete foreign antigens or display them on the surface of the sporozoite, transiently transfected populations of E. tenella expressing the fluorescent protein mCherry, linked to endogenous signal peptide (SP) and glycophosphatidylinositol-anchor (GPI) sequences, were examined. The SP from microneme protein EtMIC2 (SP2) allowed efficient trafficking of mCherry to cytoplasmic vesicles and following the C-terminal addition of a GPI-anchor (from surface antigen EtSAG1) mCherry was expressed on the sporozoite surface. In stable transgenic populations, mCherry fused to SP2 was secreted into the sporocyst cavity of the oocysts and after excystation, secretion was detected in culture supernatants but not into the parasitophorous vacuole after invasion. When the GPI was incorporated, mCherry was observed on the sporozites surface and in the supernatant of invading sporozoites. The proven secretion and surface exposure of mCherry suggests that antigen fusions with SP2 and GPI of EtSAG1 may be promising candidates to examine induction of protective immunity against heterologous pathogens
Numerical simulations of multiple scattering of the mode by flux tubes
We use numerial simulations to study the absorption and phase shift of
surface-gravity waves caused by groups of magnetic flux tubes. The dependence
of the scattering coefficients with the distance between the tubes and their
positions is analyzed for several cases with two or three flux tubes embedded
in a quiet Sun atmosphere. The results are compared with those obtained
neglecting completely or partially multiple scattering effects. We show that
multiple scattering has a significant impact on the absorption measurements and
tends to reduce the phase shift. We also consider more general cases of
ensembles of randomly distributed flux tubes, and we have evaluated the effects
on the scattering measurements of changing the number of tubes included in the
bundle and the average distance between flux tubes. We find that for the
longest wavelength incoming waves multiple scattering enhances the absorption,
and its efficiency increases with the number of flux tubes and the reduction of
the distance between them.Comment: Accepted for publication in The Astrophysical Journa
Viral proteins expressed in the protozoan parasite Eimeria tenella are detected by the chicken immune system
BACKGROUND: Eimeria species are parasitic protozoa that cause coccidiosis, an intestinal disease commonly characterised by malabsorption, diarrhoea and haemorrhage that is particularly important in chickens. Vaccination against chicken coccidiosis is effective using wild-type or attenuated live parasite lines. The development of protocols to express foreign proteins in Eimeria species has opened up the possibility of using Eimeria live vaccines to deliver heterologous antigens and function as multivalent vaccine vectors that could protect chickens against a range of pathogens. RESULTS: In this study, genetic complementation was used to express immunoprotective virus antigens in Eimeria tenella. Infectious bursal disease virus (IBDV) causes Gumboro, an immunosuppressive disease that affects productivity and can interfere with the efficacy of poultry vaccination programmes. Infectious laryngotracheitis virus (ILTV) causes a highly transmissible respiratory disease for which strong cellular immunity and antibody responses are required for effective vaccination. Genes encoding the VP2 protein from a very virulent strain of IBDV (vvVP2) and glycoprotein I from ILTV (gI) were cloned downstream of 5’Et-Actin or 5’Et-TIF promoter regions in plasmids that also contained a mCitrine fluorescent reporter cassette under control of the 5’Et-MIC1 promoter. The plasmids were introduced by nucleofection into E. tenella sporozoites, which were then used to infect chickens. Progeny oocysts were sorted by FACS and passaged several times in vivo until the proportion of fluorescent parasites in each transgenic population reached ~20 % and the number of transgene copies per parasite genome decreased to < 10. All populations were found to transcribe and express the transgene and induced the generation of low titre, transgene-specific antibodies when used to immunise chickens. CONCLUSIONS: E. tenella can express antigens of other poultry pathogens that are successfully recognised by the chicken immune system. Nonetheless, further work has to be done in order to improve the levels of expression for its future use as a multivalent vaccine vector. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13071-016-1756-2) contains supplementary material, which is available to authorized users
Evaluation of the capability of local helioseismology to discern between monolithic and spaghetti sunspot models
The helioseismic properties of the wave scattering generated by monolithic
and spaghetti sunspots are analyzed by means of numerical simulations. In these
computations, an incident f or p1 mode travels through the sunspot model, which
produces absorption and phase shift of the waves. The scattering is studied by
inspecting the wavefield, computing travel-time shifts, and performing
Fourier-Hankel analysis. The comparison between the results obtained for both
sunspot models reveals that the differences in the absorption coefficient can
be detected above noise level. The spaghetti model produces an steep increase
of the phase shift with the degree of the mode at short wavelengths, while
mode-mixing is more efficient for the monolithic model. These results provide a
clue for what to look for in solar observations to discern the constitution of
sunspots between the proposed monolithic and spaghetti models.Comment: Accepted for publication in The Astrophysical Journa
Helioseismic holography of simulated sunspots: magnetic and thermal contributions to travel times
Wave propagation through sunspots involves conversion between waves of
acoustic and magnetic character. In addition, the thermal structure of sunspots
is very different than that of the quiet Sun. As a consequence, the
interpretation of local helioseismic measurements of sunspots has long been a
challenge. With the aim of understanding these measurements, we carry out
numerical simulations of wave propagation through sunspots. Helioseismic
holography measurements made from the resulting simulated wavefields show
qualitative agreement with observations of real sunspots. We use additional
numerical experiments to determine, separately, the influence of the thermal
structure of the sunspot and the direct effect of the sunspot magnetic field.
We use the ray approximation to show that the travel-time shifts in the thermal
(non-magnetic) sunspot model are primarily produced by changes in the wave path
due to the Wilson depression rather than variations in the wave speed. This
shows that inversions for the subsurface structure of sunspots must account for
local changes in the density. In some ranges of horizontal phase speed and
frequency there is agreement (within the noise level in the simulations)
between the travel times measured in the full magnetic sunspot model and the
thermal model. If this conclusion proves to be robust for a wide range of
models, it would suggest a path towards inversions for sunspot structure.Comment: Accepted for publication in The Astrophysical Journa
Computer assisted assessment and advice for "non-serious" 999 ambulance service callers : the potential impact on ambulance despatch
Objective: To investigate the potential impact for ambulance services of telephone assessment and
triage for callers who present with non-serious problems (Category C calls) as classified by ambulance
service call takers.
Design: Pragmatic controlled trial. Calls identified using priority dispatch protocols as non-serious
were allocated to intervention and control groups according to time of call. Ambulance dispatch
occurred according to existing procedures. During intervention sessions, nurses or paramedics within
the control room used a computerised decision support system to provide telephone assessment, triage
and, if appropriate, offer advice to permit estimation of the potential impact on ambulance dispatch.
Setting: Ambulance services in London and the West Midlands.
Subjects: Patients for whom emergency calls were made to the ambulance services between April
1998 and May 1999 during four hour sessions sampled across all days of the week between 0700
and 2300.
Main outcome measures: Triage decision, ambulance cancellation, attendance at an emergency
department.
Results: In total, there were 635 intervention calls and 611 controls. Of those in the intervention group,
330 (52.0%) were triaged as not requiring an emergency ambulance, and 119 (36.6%) of these did
not attend an emergency department. This compares with 55 (18.1%) of those triaged by a nurse or
paramedic as requiring an ambulance (odds ratio 2.62; 95% CI 1.78 to 3.85). Patients triaged as not
requiring an emergency ambulance were less likely to be admitted to an inpatient bed (odds ratio
0.55; 95% CI 0.33 to 0.93), but even so 30 (9.2%) were admitted. Nurses were more likely than
paramedics to triage calls into the groups classified as not requiring an ambulance. After controlling
for age, case mix, time of day, day of week, season, and ambulance service, the results of a logistic
regression analysis revealed that this difference was significant with an odds ratio for nurses:paramedics
of 1.28 (95% CI 1.12 to 1.47).
Conclusions: The findings indicate that telephone assessment of Category C calls identifies patients
who are less likely to require emergency department care and that this could have a significant impact
on emergency ambulance dispatch rates. Nurses were more likely than paramedics to assess calls as
requiring an alternative response to emergency ambulance despatch, but the extent to which this relates
to aspects of training and professional perspective is unclear. However, consideration should be given
to the acceptability, reliability, and cost consequences of this intervention before it can be
recommended for full evaluation
Collective Fluorescence Enhancement In Nanoparticle Clusters
Many nanoscale systems are known to emit light intermittently under continuous illumination. In the fluorescence of single semiconductor nanoparticles, the distributions of bright and dark periods (\u27on\u27 and \u27off\u27 times) follow Levy statistics. Although fluorescence from single-quantum dots and from macroscopic quantum dot ensembles has been studied, there has been little study of fluorescence from small ensembles. Here we show that blinking nanorods (NRs) interact with each other in a cluster, and the interactions affect the blinking statistics. The on-times in the fluorescence of a NR cluster increase dramatically; in a cluster with N NRs, the maximum on-time increases by a factor of N or more compared with the combined signal from N well-separated NRs. Our study emphasizes the use of statistical properties in identifying the collective dynamics. The scaling of this interaction-induced increase of on-times with number of NRs reveals a novel collective effect at the nanoscale
- …
