414 research outputs found

    Teaching the Grid: Learning Distributed Computing with the M-grid Framework

    No full text
    A classic challenge within Computer Science is to distribute data and processes so as to take advantage of multiple computers tackling a single problem in a simultaneous and coordinated way. This situation arises in a number of different scenarios, including Grid computing which is a secure, service-based architecture for tackling massively parallel problems and creating virtual organizations. Although the Grid seems destined to be an important part of the future computing landscape, it is very difficult to learn how to use as real Grid software requires extensive setting up and complex security processes. M-grid mimics the core features of the Grid, in a much simpler way, enabling the rapid prototyping of distributed applications. We describe m-grid and explore how it may be used to teach foundation Grid computing skills at the Higher Education level and report some of our experiences of deploying it as an exercise within a programming course

    Eukaryotic RNases H1 act processively by interactions through the duplex RNA-binding domain

    Get PDF
    Ribonucleases H have mostly been implicated in eliminating short RNA primers used for initiation of lagging strand DNA synthesis. Escherichia coli RNase HI cleaves these RNA–DNA hybrids in a distributive manner. We report here that eukaryotic RNases H1 have evolved to be processive enzymes by attaching a duplex RNA-binding domain to the RNase H region. Highly conserved amino acids of the duplex RNA-binding domain are required for processivity and nucleic acid binding, which leads to dimerization of the protein. The need for a processive enzyme underscores the importance in eukaryotic cells of processing long hybrids, most of which remain to be identified. However, long RNA–DNA hybrids formed during immunoglobulin class-switch recombination are potential targets for RNase H1 in the nucleus. In mitochondria, where RNase H1 is essential for DNA formation during embryogenesis, long hybrids may be involved in DNA replication

    High density of unrepaired genomic ribonucleotides leads to Topoisomerase 1-mediated severe growth defects in absence of ribonucleotide reductase

    Get PDF
    Cellular levels of ribonucleoside triphosphates (rNTPs) are much higher than those of deoxyribonucleoside triphosphates (dNTPs), thereby influencing the frequency of incorporation of ribonucleoside monophosphates (rNMPs) by DNA polymerases (Pol) into DNA. RNase H2-initiated ribonucleotide excision repair (RER) efficiently removes single rNMPs in genomic DNA. However, processing of rNMPs by Topoisomerase 1 (Top1) in absence of RER induces mutations and genome instability. Here, we greatly increased the abundance of genomic rNMPs in Saccharomyces cerevisiae by depleting Rnr1, the major subunit of ribonucleotide reductase, which converts ribonucleotides to deoxyribonucleotides. We found that in strains that are depleted of Rnr1, RER-deficient, and harbor an rNTP-permissive replicative Pol mutant, excessive accumulation of single genomic rNMPs severely compromised growth, but this was reversed in absence of Top1. Thus, under Rnr1 depletion, limited dNTP pools slow DNA synthesis by replicative Pols and provoke the incorporation of high levels of rNMPs in genomic DNA. If a threshold of single genomic rNMPs is exceeded in absence of RER and presence of limited dNTP pools, Top1-mediated genome instability leads to severe growth defects. Finally, we provide evidence showing that accumulation of RNA/DNA hybrids in absence of RNase H1 and RNase H2 leads to cell lethality under Rnr1 depletion

    Abasic and oxidized ribonucleotides embedded in DNA are processed by human APE1 and not by RNase H2

    Get PDF
    Ribonucleoside 5'-monophosphates (rNMPs) are the most common non-standard nucleotides found in DNA of eukaryotic cells, with over 100 million rNMPs transiently incorporated in the mammalian genome per cell cycle. Human ribonuclease (RNase) H2 is the principal enzyme able to cleave rNMPs in DNA. Whether RNase H2 may process abasic or oxidized rNMPs incorporated in DNA is unknown. The base excision repair (BER) pathway is mainly responsible for repairing oxidized and abasic sites into DNA. Here we show that human RNase H2 is unable to process an abasic rNMP (rAP site) or a ribose 8oxoG (r8oxoG) site embedded in DNA. On the contrary, we found that recombinant purified human apurinic/apyrimidinic endonuclease-1 (APE1) and APE1 from human cell extracts efficiently process an rAP site in DNA and have weak endoribonuclease and 3'-exonuclease activities on r8oxoG substrate. Using biochemical assays, our results provide evidence of a human enzyme able to recognize and process abasic and oxidized ribonucleotides embedded in DNA

    Selective inhibition of HIV-1 reverse transcriptase-associated ribonuclease H activity by hydroxylated tropolones

    Get PDF
    High-throughput screening of a National Cancer Institute library of pure natural products identified the hydroxylated tropolone derivatives β-thujaplicinol (2,7-dihydroxy-4-1(methylethyl)-2,4,6-cycloheptatrien-1-one) and manicol (1,2,3,4-tetrahydro-5-7-dihydroxy-9-methyl-2-(1-methylethenyl)-6H-benzocyclohepten-6-one) as potent and selective inhibitors of the ribonuclease H (RNase H) activity of human immunodeficiency virus-type 1 reverse transcriptase (HIV-1 RT). β-Thujaplicinol inhibited HIV-1 RNase H in vitro with an IC(50) of 0.2 μM, while the IC(50) for Escherichia coli and human RNases H was 50 μM and 5.7 μM, respectively. In contrast, the related tropolone analog β-thujaplicin (2-hydroxy-4-(methylethyl)-2,4,6-cycloheptatrien-1-one), which lacks the 7-OH group of the heptatriene ring, was inactive, while manicol, which possesses a 7-OH group, inhibited HIV-1 and E.coli RNases H with IC(50) = 1.5 μM and 40 μM, respectively. Such a result highlights the importance of the 2,7-dihydroxy function of these tropolone analogs, possibly through a role in metal chelation at the RNase H active site. Inhibition of HIV-2 RT-associated RNase H indirectly indicates that these compounds do not occupy the nonnucleoside inhibitor-binding pocket in the vicinity of the DNA polymerase domain. Both β-thujaplicinol and manicol failed to inhibit DNA-dependent DNA polymerase activity of HIV-1 RT at a concentration of 50 μM, suggesting that they are specific for the C-terminal RNase H domain, while surface plasmon resonance studies indicated that the inhibition was not due to intercalation of the analog into the nucleic acid substrate. Finally, we have demonstrated synergy between β-thujaplicinol and calanolide A, a nonnucleoside inhibitor of HIV-1 RT, raising the possibility that both enzymatic activities of HIV-1 RT can be simultaneously targeted

    The association between nurse staffing and quality of care in emergency departments: A systematic review

    Get PDF
    Background: The relationship between nurse staffing, skill-mix and quality of care has been well-established in medical and surgical settings, however, there is relatively limited evidence of this relationship in emergency departments. Those that have been published identified that lower nurse staffing levels in emergency departments are generally associated with worse outcomes with the conclusion that the evidence in emergency settings was, at best, weak. Methods: We searched thirteen electronic databases for potentially eligible papers published in English up to December 2023. Studies were included if they reported on patient outcomes associated with nurse staffing within emergency departments. Observational, cross-sectional, prospective, retrospective, interrupted time-series designs, difference-in-difference, randomised control trials or quasi-experimental studies and controlled before and after studies study designs were considered for inclusion. Team members independently screened titles and abstracts. Data was synthesised using a narrative approach. Results: We identified 16 papers for inclusion; the majority of the studies (n = 10/16) were observational. The evidence reviewed identified that poorer staffing levels within emergency departments are associated with increased patient wait times, a higher proportion of patients who leave without being seen and an increased length of stay. Lower levels of nurse staffing are also associated with an increase in time to medications and therapeutic interventions, and increased risk of cardiac arrest within the emergency department. Conclusion: Overall, there remains limited high-quality empirical evidence addressing the association between emergency department nurse staffing and patient outcomes. However, it is evident that lower levels of nurse staffing are associated with adverse events that can result in delays to the provision of care and serious outcomes for patients. There is a need for longitudinal studies coupled with research that considers the relationship with skill-mix, other staffing grades and patient outcomes as well as a wider range of geographical settings. Tweetable abstract: Lower levels of nurse staffing in emergency departments are associated with delays in patients receiving treatments and poor quality care including an increase in leaving without being seen, delay in accessing treatments and medications and cardiac arrest

    RNase H2 roles in genome integrity revealed by unlinking its activities

    Get PDF
    Ribonuclease H2 (RNase H2) protects genome integrity by its dual roles of resolving transcription-related R-loops and ribonucleotides incorporated in DNA during replication. To unlink these two functions, we generated a Saccharomyces cerevisiae RNase H2 mutant that can resolve R-loops but cannot cleave single ribonucleotides in DNA. This mutant definitively correlates the 2–5 bp deletions observed in rnh201Δ strains with single rNMPs in DNA. It also establishes a connection between R-loops and Sgs1-mediated replication reinitiation at stalled forks and identifies R-loops uniquely processed by RNase H2. In mouse, deletion of any of the genes coding for RNase H2 results in embryonic lethality, and in humans, RNase H2 hypomorphic mutations cause Aicardi–Goutières syndrome (AGS), a neuroinflammatory disorder. To determine the contribution of R-loops and rNMP in DNA to the defects observed in AGS, we characterized in yeast an AGS-related mutation, which is impaired in processing both substrates, but has sufficient R-loop degradation activity to complement the defects of rnh201Δ sgs1Δ strains. However, this AGS-related mutation accumulates 2–5 bp deletions at a very similar rate as the deletion strain

    Prominent members of the human gut microbiota express endo-acting O-glycanases to initiate mucin breakdown

    Get PDF
    Epithelial cells that line the gut secrete complex glycoproteins that form a mucus layer to protect the gut wall from enteric pathogens. Here, the authors provide a comprehensive characterisation of endo-acting glycoside hydrolases expressed by mucin-degrading members of the microbiome that are able to cleave the O-glycan chains of a range of different animal and human mucins

    Contributions of the two accessory subunits, RNASEH2B and RNASEH2C, to the activity and properties of the human RNase H2 complex

    Get PDF
    Eukaryotic RNase H2 is a heterotrimeric enzyme. Here, we show that the biochemical composition and stoichiometry of the human RNase H2 complex is consistent with the properties previously deduced from genetic studies. The catalytic subunit of eukaryotic RNase H2, RNASEH2A, is well conserved and similar to the monomeric prokaryotic RNase HII. In contrast, the RNASEH2B and RNASEH2C subunits from human and Saccharomyces cerevisiae share very little homology, although they both form soluble B/C complexes that may serve as a nucleation site for the addition of RNASEH2A to form an active RNase H2, or for interactions with other proteins to support different functions. The RNASEH2B subunit has a PIP-box and confers PCNA binding to human RNase H2. Unlike Escherichia coli RNase HII, eukaryotic RNase H2 acts processively and hydrolyzes a variety of RNA/DNA hybrids with similar efficiencies, suggesting multiple cellular substrates. Moreover, of five analyzed mutations in human RNASEH2B and RNASEH2C linked to Aicardi-Goutières Syndrome (AGS), only one, R69W in the RNASEH2C protein, exhibits a significant reduction in specific activity, revealing a role for the C subunit in enzymatic activity. Near-normal activity of four AGS-related mutant enzymes was unexpected in light of their predicted impairment causing the AGS phenotype
    • …
    corecore