32 research outputs found
Oystershell Scale: An Invasive Threat to Aspen Conservation
Aspen decline is an acute and chronic problem in Arizona, where high levels of overstory mortality and a lack of recruitment continue to be observed. Oystershell scale (Lepidosaphes ulmi; OSS), an invasive sapsucking insect, has recently become widespread in native aspen stands in the southwestern U.S., further contributing to aspen mortality. Damage is severe in lower elevation stands and within ungulate exclosures created to conserve aspen. Young recruiting aspen that are rare on the landscape incur high levels of OSS-caused mortality when infested (Fig. 1). OSS has only recently become a pest of concern in the Southwest and Intermountain West, and thus, mitigation strategies are lacking for OSS in natural forest settings. OSS is also polyphagous and affects several woody hosts with thin bark, adding to management complexity. Collaborative efforts have been initiated to address OSS biology, natural predators, and management strategies
Sustainability and Drivers of \u3ci\u3ePopulus tremuloides\u3c/i\u3e Regeneration and Recruitment Near the Southwestern Edge of its Range
Quaking aspen (Populus tremuloides Michx.) ecosystems are highly valued in the southwestern United States because of the ecological, economic, and aesthetic benefits they provide. Aspen has experienced extensive mortality in recent decades, and there is evidence that many areas in Arizona, United States lack adequate recruitment to replace dying overstory trees. Maintaining sustainable levels of regeneration and recruitment (i.e. juveniles) is critical for promoting aspen ecosystem resilience and adaptive capacity, but questions remain about which factors currently limit juvenile aspen and which strategies are appropriate for managing aspen in an increasingly uncertain future. To fill these critical knowledge gaps, we sampled aspen populations across Arizona and collected data representing a suite of biotic and abiotic factors that potentially influence juvenile aspen. Specifically, we addressed two questions: (i) Is aspen sustainably regenerating and recruiting in Arizona? and (2) Which biotic and abiotic factors significantly influence aspen regeneration and recruitment? We found that many aspen populations in Arizona lack sustainable levels of juvenile aspen, and the status of recruitment was especially dire, with 40% of study plots lacking a single recruiting stem. Aspen regeneration was less abundant on warmer sites than cooler ones, highlighting the threat that a rapidly warming climate poses to aspen sustainability. Aspen recruitment was significantly more abundant in areas with recent fire than in areas without fire, and recruitment had a strong positive relationship with fire severity. The most important limiting factors for aspen recruitment were ungulate browse, especially by introduced Rocky Mountain elk (Cervus canadensis nelsoni), and the invasive insect, oystershell scale (Lepidosaphes ulmi). We conclude with a discussion of how management can promote sustainability of aspen populations by addressing the array of threats that aspen faces, such as a warming climate, chronic ungulate browse, and outbreaks of oystershell scale
Oystershell Scale (Hemiptera: Diaspididae) Population Growth, Spread, And Phenology on Aspen in Arizona, USA
Oystershell scale (OSS; Lepidosaphes ulmi L.) is an invasive insect that threatens sustainability of aspen (Populus tremuloides Michx.) in the southwestern United States. OSS invasions have created challenges for land managers tasked with maintaining healthy aspen ecosystems for the ecological, economic, and aesthetic benefits they provide. Active management is required to suppress OSS populations and mitigate damage to aspen ecosystems, but before management strategies can be implemented, critical knowledge gaps about OSS biology and ecology must be filled. This study sought to fill these gaps by addressing 3 questions: (i) What is the short-term rate of aspen mortality in OSS-infested stands in northern Arizona, USA? (ii) What are the short-term rates of OSS population growth on trees and OSS spread among trees in aspen stands? (iii) What is the phenology of OSS on aspen and does climate influence phenology? We observed high levels of aspen mortality (annual mortality rate = 10.4%) and found that OSS spread rapidly within stands (annual spread rate = 10–12.3%). We found first, second, and young third instars throughout the year and observed 2 waves of first instars (i.e., crawlers), one throughout the summer and a second in mid-winter. The first wave appeared to be driven by warming seasonal temperatures, but the cause of the second wave is unknown and might represent a second generation. We provide recommendations for future OSS research, including suggestions for more precise quantification of OSS phenology, and discuss how our results can inform management of OSS and invaded aspen ecosystems
Corrections to the universal behavior of the Coulomb-blockade peak splitting for quantum dots separated by a finite barrier
Building upon earlier work on the relation between the dimensionless interdot
channel conductance g and the fractional Coulomb-blockade peak splitting f for
two electrostatically equivalent dots, we calculate the leading correction that
results from an interdot tunneling barrier that is not a delta-function but,
rather, has a finite height V and a nonzero width xi and can be approximated as
parabolic near its peak. We develop a new treatment of the problem for g much
less than 1 that starts from the single-particle eigenstates for the full
coupled-dot system. The finiteness of the barrier leads to a small upward shift
of the f-versus-g curve at small values of g. The shift is a consequence of the
fact that the tunneling matrix elements vary exponentially with the energies of
the states connected. Therefore, when g is small, it can pay to tunnel to
intermediate states with single-particle energies above the barrier height V.
The correction to the zero-width behavior does not affect agreement with recent
experimental results but may be important in future experiments.Comment: Title changed from ``Non-universal...'' to ``Corrections to the
universal...'' No other changes. 10 pages, 1 RevTeX file with 2 postscript
figures included using eps
Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial
Background
Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy
Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases
The production of peroxide and superoxide is an inevitable consequence of
aerobic metabolism, and while these particular "reactive oxygen species" (ROSs)
can exhibit a number of biological effects, they are not of themselves
excessively reactive and thus they are not especially damaging at physiological
concentrations. However, their reactions with poorly liganded iron species can
lead to the catalytic production of the very reactive and dangerous hydroxyl
radical, which is exceptionally damaging, and a major cause of chronic
inflammation. We review the considerable and wide-ranging evidence for the
involvement of this combination of (su)peroxide and poorly liganded iron in a
large number of physiological and indeed pathological processes and
inflammatory disorders, especially those involving the progressive degradation
of cellular and organismal performance. These diseases share a great many
similarities and thus might be considered to have a common cause (i.e.
iron-catalysed free radical and especially hydroxyl radical generation). The
studies reviewed include those focused on a series of cardiovascular, metabolic
and neurological diseases, where iron can be found at the sites of plaques and
lesions, as well as studies showing the significance of iron to aging and
longevity. The effective chelation of iron by natural or synthetic ligands is
thus of major physiological (and potentially therapeutic) importance. As
systems properties, we need to recognise that physiological observables have
multiple molecular causes, and studying them in isolation leads to inconsistent
patterns of apparent causality when it is the simultaneous combination of
multiple factors that is responsible. This explains, for instance, the
decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference
VEuPathDB: the eukaryotic pathogen, vector and host bioinformatics resource center in 2023.
The Eukaryotic Pathogen, Vector and Host Informatics Resource (VEuPathDB, https://veupathdb.org) is a Bioinformatics Resource Center funded by the National Institutes of Health with additional funding from the Wellcome Trust. VEuPathDB supports >600 organisms that comprise invertebrate vectors, eukaryotic pathogens (protists and fungi) and relevant free-living or non-pathogenic species or hosts. Since 2004, VEuPathDB has analyzed omics data from the public domain using contemporary bioinformatic workflows, including orthology predictions via OrthoMCL, and integrated the analysis results with analysis tools, visualizations, and advanced search capabilities. The unique data mining platform coupled with >3000 pre-analyzed data sets facilitates the exploration of pertinent omics data in support of hypothesis driven research. Comparisons are easily made across data sets, data types and organisms. A Galaxy workspace offers the opportunity for the analysis of private large-scale datasets and for porting to VEuPathDB for comparisons with integrated data. The MapVEu tool provides a platform for exploration of spatially resolved data such as vector surveillance and insecticide resistance monitoring. To address the growing body of omics data and advances in laboratory techniques, VEuPathDB has added several new data types, searches and features, improved the Galaxy workspace environment, redesigned the MapVEu interface and updated the infrastructure to accommodate these changes
Convalescent plasma in patients admitted to hospital with COVID-19 (RECOVERY): a randomised controlled, open-label, platform trial
Background:
Many patients with COVID-19 have been treated with plasma containing anti-SARS-CoV-2 antibodies. We aimed to evaluate the safety and efficacy of convalescent plasma therapy in patients admitted to hospital with COVID-19.
Methods:
This randomised, controlled, open-label, platform trial (Randomised Evaluation of COVID-19 Therapy [RECOVERY]) is assessing several possible treatments in patients hospitalised with COVID-19 in the UK. The trial is underway at 177 NHS hospitals from across the UK. Eligible and consenting patients were randomly assigned (1:1) to receive either usual care alone (usual care group) or usual care plus high-titre convalescent plasma (convalescent plasma group). The primary outcome was 28-day mortality, analysed on an intention-to-treat basis. The trial is registered with ISRCTN, 50189673, and ClinicalTrials.gov, NCT04381936.
Findings:
Between May 28, 2020, and Jan 15, 2021, 11558 (71%) of 16287 patients enrolled in RECOVERY were eligible to receive convalescent plasma and were assigned to either the convalescent plasma group or the usual care group. There was no significant difference in 28-day mortality between the two groups: 1399 (24%) of 5795 patients in the convalescent plasma group and 1408 (24%) of 5763 patients in the usual care group died within 28 days (rate ratio 1·00, 95% CI 0·93–1·07; p=0·95). The 28-day mortality rate ratio was similar in all prespecified subgroups of patients, including in those patients without detectable SARS-CoV-2 antibodies at randomisation. Allocation to convalescent plasma had no significant effect on the proportion of patients discharged from hospital within 28 days (3832 [66%] patients in the convalescent plasma group vs 3822 [66%] patients in the usual care group; rate ratio 0·99, 95% CI 0·94–1·03; p=0·57). Among those not on invasive mechanical ventilation at randomisation, there was no significant difference in the proportion of patients meeting the composite endpoint of progression to invasive mechanical ventilation or death (1568 [29%] of 5493 patients in the convalescent plasma group vs 1568 [29%] of 5448 patients in the usual care group; rate ratio 0·99, 95% CI 0·93–1·05; p=0·79).
Interpretation:
In patients hospitalised with COVID-19, high-titre convalescent plasma did not improve survival or other prespecified clinical outcomes.
Funding:
UK Research and Innovation (Medical Research Council) and National Institute of Health Research
Tocilizumab in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial
Background:
In this study, we aimed to evaluate the effects of tocilizumab in adult patients admitted to hospital with COVID-19 with both hypoxia and systemic inflammation.
Methods:
This randomised, controlled, open-label, platform trial (Randomised Evaluation of COVID-19 Therapy [RECOVERY]), is assessing several possible treatments in patients hospitalised with COVID-19 in the UK. Those trial participants with hypoxia (oxygen saturation <92% on air or requiring oxygen therapy) and evidence of systemic inflammation (C-reactive protein ≥75 mg/L) were eligible for random assignment in a 1:1 ratio to usual standard of care alone versus usual standard of care plus tocilizumab at a dose of 400 mg–800 mg (depending on weight) given intravenously. A second dose could be given 12–24 h later if the patient's condition had not improved. The primary outcome was 28-day mortality, assessed in the intention-to-treat population. The trial is registered with ISRCTN (50189673) and ClinicalTrials.gov (NCT04381936).
Findings:
Between April 23, 2020, and Jan 24, 2021, 4116 adults of 21 550 patients enrolled into the RECOVERY trial were included in the assessment of tocilizumab, including 3385 (82%) patients receiving systemic corticosteroids. Overall, 621 (31%) of the 2022 patients allocated tocilizumab and 729 (35%) of the 2094 patients allocated to usual care died within 28 days (rate ratio 0·85; 95% CI 0·76–0·94; p=0·0028). Consistent results were seen in all prespecified subgroups of patients, including those receiving systemic corticosteroids. Patients allocated to tocilizumab were more likely to be discharged from hospital within 28 days (57% vs 50%; rate ratio 1·22; 1·12–1·33; p<0·0001). Among those not receiving invasive mechanical ventilation at baseline, patients allocated tocilizumab were less likely to reach the composite endpoint of invasive mechanical ventilation or death (35% vs 42%; risk ratio 0·84; 95% CI 0·77–0·92; p<0·0001).
Interpretation:
In hospitalised COVID-19 patients with hypoxia and systemic inflammation, tocilizumab improved survival and other clinical outcomes. These benefits were seen regardless of the amount of respiratory support and were additional to the benefits of systemic corticosteroids.
Funding:
UK Research and Innovation (Medical Research Council) and National Institute of Health Research