295 research outputs found

    Segmenting the Visitor Market by the Timing of Their Activity Decisions

    Get PDF
    The purpose of this study was to describe visitors to a Florida county and determine if a CVB\u27s promotional campaign strategies conformed with visitors\u27 need for information. The research focused on the timing of visitors\u27 activity decisions to assess whether promotional efforts were being channeled in ways that conformed to the timing of visitors\u27 information needs and decision making. Responses from 546 completed surveys revealed that 71.5% of the respondents decided which recreational activities they would engage in prior to leaving home; 3.7% made that decision en route to the county; and 24. 9% after arriving in the county. Further analysis revealed that respondents who made their activity decisions after arriving in the county were typically a part of the long haul market, stayed significantly longer than the other counterparts, and spent, on average, nearly twice as much as those that made their activity decisions prior to leaving home. Implications for marketers are discussed

    The Joint Efficient Dark-energy Investigation (JEDI): Measuring the cosmic expansion history from type Ia supernovae

    Get PDF
    JEDI (Joint Efficient Dark-energy Investigation) is a candidate implementation of the NASA-DOE Joint Dark Energy Mission (JDEM). JEDI will probe dark energy in three independent methods: (1) type Ia supernovae, (2) baryon acoustic oscillations, and (3) weak gravitational lensing. In an accompanying paper, an overall summary of the JEDI mission is given. In this paper, we present further details of the supernova component of JEDI. To derive model-independent constraints on dark energy, it is important to precisely measure the cosmic expansion history, H(z), in continuous redshift bins from z \~ 0-2 (the redshift range in which dark energy is important). SNe Ia at z > 1 are not readily accessible from the ground because the bulk of their light has shifted into the near-infrared where the sky background is overwhelming; hence a space mission is required to probe dark energy using SNe. Because of its unique near-infrared wavelength coverage (0.8-4.2 microns), JEDI has the advantage of observing SNe Ia in the rest frame J band for the entire redshift range of 0 < z < 2, where they are less affected by dust, and appear to be nearly perfect standard candles. During the first year of JEDI operations, spectra and light curves will be obtained for ~4,000 SNe Ia at z < 2. The resulting constraints on dark energy are discussed, with special emphasis on the improved precision afforded by the rest frame near-infrared data.Comment: 8 pages, accepted for publication in SPIE proceeding

    SN 1987A's Circumstellar Envelope, II: Kinematics of the Three Rings and the Diffuse Nebula

    Full text link
    We present several different measurements of the velocities of structures within the circumstellar envelope of SN 1987A, including the inner, equatorial ring (ER), outer rings (ORs), and the diffuse nebulosity at radii < 5 pc, based on CTIO 4m and HST data. A comparison of STIS and WFPC2 [N II]6583 loci for the rings show that the ER is expanding in radius at 10.5+-0.3 km/s, with the northern OR expanding along the line of sight at about 26 km/s, and for the southern OR, about 23 km/s. Similar results are found with CTIO 4m data. Accounting for inclination, the best fit to all data show both ORs with an expansion from the SN of 26 km/s. The ratio of the ER to OR velocities is nearly equal to the ratio of ER to OR radii, so the rings are roughly homologous, all having kinematic ages corresponding to about 20,000 yr before the SN explosion. This makes previously reported, large compositional differences between the ER and ORs difficult to understand. Additionally, a grid of longslit 4m/echelle spectra centered on the SN shows two velocity components over a region roughly coextensive with the outer circumstellar envelope extending about 5 pc (20 arcsec) from the SN. One component is blueshifted and the other redshifted from the SN centroid by about 10 km/s each. These features may represent a bipolar flow expanding from the SN, in which the ORs are propelled 10-15 km/s faster than that of the surrounding envelope into which they propogate. The kinematic timescale for the entire nebula is at least about 350,000 yr. The kinematics of these various structures constrain possible models for the evolution of the progenitor and its formation of a mass loss nebula.Comment: 25 pages AASTeX text plus 12 figures. ApJ, in pres

    QSOs and Absorption Line Systems Surrounding the Hubble Deep Field

    Get PDF
    We have imaged a 45x45 sq. arcmin. area centered on the Hubble Deep Field (HDF) in UBVRI passbands, down to respective limiting magnitudes of approximately 21.5, 22.5, 22.2, 22.2, and 21.2. The principal goals of the survey are to identify QSOs and to map structure traced by luminous galaxies and QSO absorption line systems in a wide volume containing the HDF. We have selected QSO candidates from color space, and identified 4 QSOs and 2 narrow emission-line galaxies (NELGs) which have not previously been discovered, bringing the total number of known QSOs in the area to 19. The bright z=1.305 QSO only 12 arcmin. away from the HDF raises the northern HDF to nearly the same status as the HDF-S, which was selected to be proximate to a bright QSO. About half of the QSO candidates remain for spectroscopic verification. Absorption line spectroscopy has been obtained for 3 bright QSOs in the field, using the Keck 10m, ARC 3.5m, and MDM 2.4m telescopes. Five heavy-element absorption line systems have been identified, 4 of which overlap the well-explored redshift range covered by deep galaxy redshift surveys towards the HDF. The two absorbers at z=0.5565 and z=0.5621 occur at the same redshift as the second most populated redshift peak in the galaxy distribution, but each is more than 7Mpc/h (comoving, Omega_M=1, Omega_L=0) away from the HDF line of sight in the transverse dimension. This supports more indirect evidence that the galaxy redshift peaks are contained within large sheet-like structures which traverse the HDF, and may be precursors to large-scale ``pancake'' structures seen in the present-day galaxy distribution.Comment: 36 pages, including 9 figures and 8 tables. Accepted for publication in the Astronomical Journa

    Survey for Transiting Extrasolar Planets in Stellar Systems: III. A Limit on the Fraction of Stars with Planets in the Open Cluster NGC 1245

    Full text link
    We analyze a 19-night photometric search for transiting extrasolar planets in the open cluster NGC 1245. An automated transit search algorithm with quantitative selection criteria finds six transit candidates; none are bona fide planetary transits. We characterize the survey detection probability via Monte Carlo injection and recovery of realistic limb-darkened transits. We use this to derive upper limits on the fraction of cluster members with close-in Jupiter-radii, RJ, companions. We carefully analyze the random and systematic errors of the calculation. For similar photometric noise and weather properties as this survey, observing NGC 1245 twice as long results in a tighter constraint on "Hot Jupiter", HJ, companions than observing an additional cluster of similar richness as NGC 1245 for the same length of time as this survey. This survey observed ~870 cluster members. If 1% of stars have 1.5 RJ HJ companions, we expect to detect one planet for every 5000 dwarf stars observed for a month. To reach a ~2% upper limit on the fraction of stars with 1.5 RJ HJ companions, we conclude a total sample size of ~7400 dwarf stars observed for at least a month will be needed. Results for 1.0 RJ companions, without substantial improvement in the photometric precision, will require a small factor larger sample size.Comment: 24 pages, 15 figures, submitted A

    Probing the time dependence of dark energy

    Full text link
    A new method to investigate a possible time-dependence of the dark energy equation of state ww is proposed. We apply this methodology to two of the most recent data sets of type Ia supernova (Union2 and SDSS) and the baryon acoustic oscillation peak at z=0.35z = 0.35. For some combinations of these data, we show that there is a clear departure from the standard Λ\LambdaCDM model at intermediary redshifts, although a non-evolving dark energy component (dw/dz=0dw/dz = 0) cannot be ruled out by these data. The approach developed here may be useful to probe a possible evolving dark energy component when applied to upcoming observational data.Comment: 6 pages, 3 figures, LaTe

    The remnant of SN1987A revealed at (sub-)mm wavelengths

    Full text link
    Context: Supernova 1987A (SN1987A) exploded in the Large Magellanic Cloud (LMC). Its proximity and rapid evolution makes it a unique case study of the early phases in the development of a supernova remnant. One particular aspect of interest is the possible formation of dust in SN1987A, as SNe could contribute significantly to the dust seen at high redshifts. Aims: We explore the properties of SN1987A and its circumburst medium as seen at mm and sub-mm wavelengths, bridging the gap between extant radio and infrared (IR) observations of respectively the synchrotron and dust emission. Methods: SN1987A was observed with the Australia Telescope Compact Array (ATCA) at 3.2 mm in July 2005, and with the Atacama Pathfinder EXperiment (APEX) at 0.87 mm in May 2007. We present the images and brightness measurements of SN1987A at these wavelengths for the first time. Results: SN1987A is detected as an unresolved point source of 11.2 +/- 2.0 mJy at 3.2 mm (5" beam) and 21 +/- 4 mJy at 0.87 mm (18" beam). These flux densities are in perfect agreement with extrapolations of the powerlaw radio spectrum and modified-blackbody dust emission, respectively. This places limits on the presence of free-free emission, which is similar to the expected free-free emission from the ionized ejecta from SN1987A. Adjacent, fainter emission is observed at 0.87 mm extending ~0.5' towards the south-west. This could be the impact of the supernova progenitor's wind when it was still a red supergiant upon a dense medium. Conclusions: We have established a continuous spectral energy distribution for the emission from SN1987A and its immediate surroundings, linking the IR and radio data. This places limits on the contribution from ionized plasma. Our sub-mm image reveals complexity in the distribution of cold dust surrounding SN1987A, but leaves room for freshly synthesized dust in the SN ejecta.Comment: Accepted for publication in Astronomy and Astrophysics Letters on 28 April 2011. A better quality figure 1 can be had from http://www.astro.keele.ac.uk/~jacco/research/SN1987A087mm.ep

    Towards an explanation for the 30 Dor (LMC) Honeycomb nebula - the impact of recent observations and spectral analysis

    Full text link
    The unique Honeycomb nebula, most likely a peculiar supernova remnant, lies in 30 Doradus in the Large Magellanic Cloud. Due to its proximity to SN1987A, it has been serendipitously and intentionally observed at many wavelengths. Here, an optical spectral analysis of forbidden line ratios is performed in order to compare the Honeycomb high-speed gas with supernova remnants in the Galaxy and the LMC, with galactic Wolf-Rayet nebulae and with the optical line emission from the interaction zone of the SS433 microquasar and W50 supernova remnant system. An empirical spatiokinematic model of the images and spectra for the Honeycomb reveals that its striking appearance is most likely due to a fortuitous viewing angle. The Honeycomb nebula is more extended in soft X-ray emission and could in fact be a small part of the edge of a giant LMC shell revealed for the first time in this short wavelength domain. It is also suggested that a previously unnoticed region of optical emission may in fact be an extension of the Honeycomb around the edge of this giant shell. A secondary supernova explosion in the edge of a giant shell is considered for the creation of the Honeycomb nebula. A microquasar origin of the Honeycomb nebula as opposed to a simple supernova origin is also evaluated.Comment: 12 pages, 9 figures, accepted for publication in MNRA
    • …
    corecore