639 research outputs found

    Carba-D,L-allal- and -D,L-galactal-derived vinyl N-nosyl aziridines as useful tools for the synthesis of 4-deoxy-4-(N-nosylamino)-2,3-unsaturated-5a-carbasugars

    Get PDF
    The novel carba-D,L-allal- and carba-D,L-galactal-derived vinyl N-nosyl aziridines were prepared and the regio- and stereoselective behavior in opening reactions with O- and N-nucleophiles examined. The carbaglycosylating ability of the novel aziridines, as deduced by the amount of 1,4-addition products (1,4-regioselectivity) obtained in the acid-catalyzed methanolysis taken as a model reaction, is similar or superior to that observed with the corresponding carba-D,L-allal- and -D,L-galactal-derived vinyl epoxides, respectively. In all 1,2- and 1,4-addition products obtained, a –(N-nosylamino) group is regio- and stereoselectively introduced at the C(4) carbon of a 1,2- or 2,3-unsaturated carbasugar, susceptible to further elaborations toward aminocyclitol derivatives. The stereoselective synthesis of the corresponding, enantiomerically pure carba-D,L-allal- and -D,L-galactal-derived vinyl N-acetyl aziridines is also described

    Evolution of submarine sediment density flows deduced from long distance bed correlations

    Get PDF
    Submarine flows can transport huge volumes of sediment across the large submarine fans that dominate many parts of the deep ocean floor. Active flow events are notoriously difficult to monitor directly, and therefore our understanding of such flows still strongly relies on the analysis of the deposits they leave behind. This thesis aims to investigate the transport and depositional processes, the stacking patterns and the time frequency distribution of turbidites and debrites deposited in the Miocene Marnoso Arenacea Formation (Italian Apennines). This location is unique because deposits from individual flow events (beds) can be traced for long distances, allowing the lateral and down flow evolution of single flow events to be analyzed in detail. Lateral changes in individual flow deposits are documented through extensive correlation of beds deposited in a stratigraphic interval below the most prominent Contessa Marker bed. The observed transitions in facies, and the external shape of different types of deposit, are used as an independent test of models that capture our understanding of submarine flow processes. This work highlights how deposits of submarine density flows can be complex, even in relatively simple basin plain settings. A single event can comprise different flow types, and transformations can occur between these flow types. The initial volume, sediment concentration and grain size (including the proportion of fine cohesive mud) control the external shape of the deposits. Low density turbidity currents deposit clean sandstone beds with an exponentially tapering shape, while coarser grained high density turbidity currents produce massive or parallel laminated layers that maintain their thickness for longer (10’s of kilometers) distances. Cohesive debris flows form istinctive ungraded mud-rich sandstone that can either pinch-out abruptly or gradually taper. Liquefied debris flows with elevated pore pressures can deposit clean (mud-poor) sand over large areas (up to 30 km) of the Marnoso Arenacea basin plain. This is suggested by the distinctive swirly, patchy fabric of a particular type of clean sandstone, that records pervasive liquefaction during the late stages of the flow, and confirmed by the rapid pinch-out geometry of flow deposits at their margins. Such debris flows most likely form through transformation from an initial high density turbidity current. A similar flow process may characterize the distal, rapid pinch out of sandstone lobes in Fan 4 of the Skoorsteenberg Formation (Karoo basin, South Africa). The observed stacking pattern of turbidite beds in a 530 meters thick stratigraphic section indicates a long-term clustering. Debrite intervals however occur randomly, and bed correlation suggest that almost every large volume flow deposited clean or muddy debrite (or both) intervals in different positions of the basin. Hemipelagic marl thickness is used as a proxy for time between flow events. The distribution of time between events is exponential, therefore related to a Poisson Process. This indicates that flow events (most likely triggered by submarine slope failures) occur independently one from the other through time.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Asaia, a versatile acetic acid bacterial symbiont, capable of cross-colonizing insects of phylogenetically-distant genera and orders

    Get PDF
    Bacterial symbionts of insects have been proposed for blocking transmission of vector-borne pathogens. However, in many vector models the ecology of symbionts and their capability of cross-colonizing different hosts, an important feature in the symbiotic control approach, is poorly known. Here we show that the acetic acid bacterium Asaia, previously found in the malaria mosquito vector Anopheles stephensi, is also present in and capable of cross-colonizing other sugar-feeding insects of phylogenetically distant genera and orders. PCR, real-time PCR and in situ-hybridization experiments showed Asaia in the body of the mosquito Aedes aegypti and the leafhopper Scaphoideus titanus, vectors of human viruses and a grapevine phytoplasma, respectively. Cross colonization patterns of the body of Ae. aegypti, An. stephensi and S. titanus have been documented with Asaia strains isolated from An. stephensi or Ae. aegypti, and labelled with plasmid- or chromosome-encoded fluorescent proteins (Gfp and DsRed, respectively). Fluorescence and confocal microscopy showed that Asaia, administered with the sugar meal, efficiently colonized guts, male and female reproductive systems and the salivary glands. The ability in cross-colonizing insects of phylogenetically distant orders indicates that Asaia adopts body invasion mechanisms independent from the host biological characteristics. This versatility is an important property for the development of symbiont-based therapies of different vector-borne diseases

    Deep ice as a geochemical reactor: Insights from iron speciation and mineralogy of dust in the Talos Dome ice core (East Antarctica)

    Get PDF
    Thanks to its insolubility, mineral dust is considered a stable proxy in polar ice cores. With this study we show that the Talos Dome ice core (TALDICE, Ross Sea sector of East Antarctica) displays evident and progressive signs of post-depositional processes affecting the mineral dust record below 1000g m deep. We apply a suite of established and cutting-edge techniques to investigate the properties of dust in TALDICE, ranging from concentration and grain size to elemental composition and Fe mineralogy. Results show that through acidic/oxidative weathering, the conditions of deep ice at Talos Dome promote the dissolution of specific minerals and the englacial formation of others, affecting primitive dust features. The expulsion of acidic atmospheric species from ice grains and their concentration in localized environments is likely the main process responsible for englacial reactions. Deep ice can be seen as a "geochemical reactor"capable of fostering complex reactions which involve both soluble and insoluble impurities. Fe-bearing minerals can efficiently help in exploring such transformations

    Interactions between Asaia, Plasmodium and Anopheles: new insights into mosquito symbiosis and implications in malaria symbiotic control

    Get PDF
    Background Malaria represents one of the most devastating infectious diseases. The lack of an effective vaccine and the emergence of drug resistance make necessary the development of new effective control methods. The recent identification of bacteria of the genus Asaia, associated with larvae and adults of malaria vectors, designates them as suitable candidates for malaria paratransgenic control. To better characterize the interactions between Asaia, Plasmodium and the mosquito immune system we performed an integrated experimental approach. Methods Quantitative PCR analysis of the amount of native Asaia was performed on individual Anopheles stephensi specimens. Mosquito infection was carried out with the strain PbGFPCON and the number of parasites in the midgut was counted by fluorescent microscopy. The colonisation of infected mosquitoes was achieved using GFP or DsRed tagged-Asaia strains. Reverse transcriptase-PCR analysis, growth and phagocytosis tests were performed using An. Stephensi and Drosophila melanogaster haemocyte cultures and DsRed tagged-Asaia and Escherichia coli strains. Results Using quantitative PCR we have quantified the relative amount of Asaia in infected and uninfected mosquitoes, showing that the parasite does not interfere with bacterial blooming. The correlation curves have confirmed the active replication of Asaia, while at the same time, the intense decrease of the parasite. The 'in vitro' immunological studies have shown that Asaia induces the expression of antimicrobial peptides, however, the growth curves in conditioned medium as well as a phagocytosis test, indicated that the bacterium is not an immune-target. Using fluorescent strains of Asaia and Plasmodium we defined their co-localisation in the mosquito midgut and salivary glands. Conclusions We have provided important information about the relationship of Asaia with both Plasmodium and Anopheles. First, physiological changes in the midgut following an infected or uninfected blood meal do not negatively affect the residing Asaia population that seems to benefit from this condition. Second, Asaia can act as an immune-modulator activating antimicrobial peptide expression and seems to be adapted to the host immune response. Last, the co-localization of Asaia and Plasmodium highlights the possibility of reducing vectorial competence using bacterial recombinant strains capable of releasing anti-parasite molecules

    The Genomes of Four Meyerozymacaribbica Isolates and Novel Insights into the Meyerozymaguilliermondii Species Complex

    Get PDF
    Yeasts of the Meyerozyma guilliermondii species complex are widespread in nature and can be isolated from a variety of sources, from the environment to arthropods to hospital patients. To date, the species complex comprises the thoroughly studied and versatile M. guilliermondii, and the hard to distinguish M. caribbica, and Candida carpophila Here we report the whole-genome sequencing and de novo assembly of four M. caribbica isolates, identified with the most recent molecular techniques, derived from four Diptera species. The four novel assemblies present reduced fragmentation and comparable metrics (genome size, gene content) to the available genomes belonging to the species complex. We performed a phylogenomic analysis comprising all known members of the species complex, to investigate evolutionary relationships within this clade. Our results show a compact phylogenetic structure for the complex and indicate the presence of a sizable core set of genes. Furthermore, M. caribbica, despite a broad literature on the difficulties of discerning it from M. guilliermondii, seems to be more closely related to C. carpophila Finally, we believe that there is evidence for considering these four genomes the first published for the species M. caribbica Raw reads and assembled contigs have been made public to further the studies on these organisms

    Recurrent and Founder Mutations in the Netherlands: the Long-QT Syndrome

    Get PDF
    Background and objective The long-QT syndrome (LQTS) is associated with premature sudden cardiac deaths affecting whole families and is caused by mutations in genes encoding for cardiac proteins. When the same mutation is found in different families (recurrent mutations), this may imply either a common ancestor (founder) or multiple de novo mutations. We aimed to review recurrent mutations in patients with LQTS. Methods By use of our databases, we investigated the number of mutations that were found recurrently (at least three times) in LQT type 1-3 patients in the Netherlands. We studied familial links in the apparently unrelated probands, and we visualised the geographical distribution of these probands. Our results were compared with published literature of founder effects in LQTS outside the Netherlands. Results We counted 14 recurrent LQT mutations in the Netherlands. There are 326 identified carriers of one of these mutations. For three of these mutations, familial links were found between apparently unrelated probands. Conclusion Whereas true LQT founder mutations are described elsewhere in the world, we cannot yet demonstrate a real founder effect of these recurrent mutations in the Netherlands. Further studies on the prevalence of these mutations are indicated, and haplotype-sharing of the mutation carriers is pertinent to provide more evidence for founder mutation-based LQTS pathology in our countr

    MicroRNAs in cardiac arrhythmia: DNA sequence variation of MiR-1 and MiR-133A in long QT syndrome.

    Get PDF
    Long QT syndrome (LQTS) is a genetic cardiac condition associated with prolonged ventricular repolarization, primarily a result of perturbations in cardiac ion channels, which predisposes individuals to life-threatening arrhythmias. Using DNA screening and sequencing methods, over 700 different LQTS-causing mutations have been identified in 13 genes worldwide. Despite this, the genetic cause of 30-50% of LQTS is presently unknown. MicroRNAs (miRNAs) are small (∼ 22 nucleotides) noncoding RNAs which post-transcriptionally regulate gene expression by binding complementary sequences within messenger RNAs (mRNAs). The human genome encodes over 1800 miRNAs, which target about 60% of human genes. Consequently, miRNAs are likely to regulate many complex processes in the body, indeed aberrant expression of various miRNA species has been implicated in numerous disease states, including cardiovascular diseases. MiR-1 and MiR-133A are the most abundant miRNAs in the heart and have both been reported to regulate cardiac ion channels. We hypothesized that, as a consequence of their role in regulating cardiac ion channels, genetic variation in the genes which encode MiR-1 and MiR-133A might explain some cases of LQTS. Four miRNA genes (miR-1-1, miR-1-2, miR-133a-1 and miR-133a-2), which encode MiR-1 and MiR-133A, were sequenced in 125 LQTS probands. No genetic variants were identified in miR-1-1 or miR-133a-1; but in miR-1-2 we identified a single substitution (n.100A> G) and in miR-133a-2 we identified two substitutions (n.-19G> A and n.98C> T). None of the variants affect the mature miRNA products. Our findings indicate that sequence variants of miR-1-1, miR-1-2, miR-133a-1 and miR-133a-2 are not a cause of LQTS in this cohort
    • …
    corecore