133 research outputs found

    Quantitative risk assessment of hepatitis E virus: modelling the occurrence of viraemic pigs and the presence of the virus in organs of food safety interest

    Get PDF
    Hepatitis E virus (HEV) is a zoonotic pathogen with consumption of pork and derived products identified in different countries as a risk factor for human exposure to HEV. Great efforts have been made to understand the dynamics of virus transmission within domestic swine populations through modelling. However, from a food safety prospective, it is critical to integrate the parameters involved in the transmission dynamics with those governing the actual presence of HEV in the bloodstream, the liver, gallbladder or faeces. To date, several aspects related to the pathogenesis of the disease are still unknown or characterized by significant levels of uncertainty, making this conjunction challenging. We used published serological data obtained from pigs in a farrow-to-finish farm to implement an Immune-Susceptible-Infected-Recovered (MSIR) model reproducing the on-farm dynamics that lead to the occurrence of viraemic pigs at slaughter. Expert opinion on the length of time infectious HEV can be detected in liver, gallbladder/bile and faeces after recovery from viraemic status were used to inform a stochastic model aimed at estimating the expected proportion of viraemic pigs, pigs with infectious HEV in liver, gallbladder/bile and faeces entering the slaughterhouse. To simulate the potential effect of on-farm mitigation strategies, we estimated the changes in outcomes of interest as a function of variations in the baseline transmission parameters. The model predicted a proportion of viraemic pigs entering the slaughterhouse of 13.8% while the proportions of, and ranged from 13.8% to 94.4%, 13.8% to 94.7% and from 25.3% to 30.8% respectively, due to the uncertainty surrounding the experts’ opinions. Variations in MSIR model’s parameters alert of the need to carefully consider the application of mitigation strategies aimed at delaying the decay of maternal immunity or the peak of the within herd transmission. When the rate of decay of maternal immunity and the transmission rate were decreased between 80% and 5% and 40% and 5% from the baseline values respectively, adverse effects on were observed. The model highlights the relevance of specific aspects in the pathogenesis of the disease from a food safety prospective and it was developed to be easily reproducible and updatable as soon as accurate data becomes available. As presented, the model can be directly connected to existing or future pig-related models to estimate the significance of the identified parameters on the risk of human exposure to HEV through consumption of pork products

    Towards an integrated food safety surveillance system: a simulation study to explore the potential of combining genomic and epidemiological metadata

    Get PDF
    Foodborne infection is a result of exposure to complex, dynamic food systems. The efficiency of foodborne infection is driven by ongoing shifts in genetic machinery. Next-generation sequencing technologies can provide high-fidelity data about the genetics of a pathogen. However, food safety surveillance systems do not currently provide similar high-fidelity epidemiological metadata to associate with genetic data. As a consequence, it is rarely possible to transform genetic data into actionable knowledge that can be used to genuinely inform risk assessment or prevent outbreaks. Big data approaches are touted as a revolution in decision support, and pose a potentially attractive method for closing the gap between the fidelity of genetic and epidemiological metadata for food safety surveillance. We therefore developed a simple food chain model to investigate the potential benefits of combining ‘big’ data sources, including both genetic and high-fidelity epidemiological metadata. Our results suggest that, as for any surveillance system, the collected data must be relevant and characterize the important dynamics of a system if we are to properly understand risk: this suggests the need to carefully consider data curation, rather than the more ambitious claims of big data proponents that unstructured and unrelated data sources can be combined to generate consistent insight. Of interest is that the biggest influencers of foodborne infection risk were contamination load and processing temperature, not genotype. This suggests that understanding food chain dynamics would probably more effectively generate insight into foodborne risk than prescribing the hazard in ever more detail in terms of genotype

    Viraemic pigs entering the food chain are the most likely source of hepatitis E virus (HEV) in pork meat: Modelling the fate of HEV during slaughtering of pigs

    Get PDF
    Hepatitis E Virus (HEV) is an emerging foodborne pathogen and consumption of raw or undercooked pork products has been associated with increased risk of human infection. This work represents the first attempt to evaluate the risk of HEV being present on pig carcasses and in meat at the end of the slaughtering process considering the steps of bleeding, scalding, dehairing, singeing, polishing, evisceration and trimming. Based on available knowledge on the epidemiology and biology of HEV, the risk pathways leading to the presence of HEV on carcasses as a consequence of (i) faecal contamination of the skin from environment and contacts with contaminated faeces during transport and lairage, (ii) contact with viraemic blood at bleeding and (iii) faecal/bile cross-contamination during evisceration were assessed qualitatively. The pathway through which HEV could be present in meat of viraemic pigs, as conveyed by residual blood in muscular tissue after bleeding was instead modelled quantitatively. Of the three risk pathways evaluated qualitatively, only the occurrence of HEV on carcasses as a consequence of accidental rupture of the gut or gallbladder at evisceration was found to be non-negligible, but with a very low likelihood of occurrence. The quantitative output for the expected amount of HEV in meat of viraemic pigs shows minimum and maximum values of 0.10 and 1.1 × 104 genome copies (gc)/g respectively with 4.8 × 102 and 5.3 × 103 gc/g at 95th and 99th percentile of the cumulative distribution. These results are consistent with the existing evidence that levels of HEV RNA in meat samples are usually low even in the presence of high viral loads in livers of the same animals. Results of the sensitivity analysis confirm highly viraemic pigs entering the slaughter line as those posing the greater risk for consumers. Our study suggests that prevention of HEV infection through consumption of pork meat at pre-harvest/harvest stages should focus on reducing the flow of highly viraemic pigs into the food chain

    Octreotide 24‐h prophylaxis in patients at high risk for post‐ERCP pancreatitis: results of a multicenter, randomized, controlled trial

    Get PDF
    Background:Pharmacological prophylaxis of post‐ERCP pancreatitis is costly and not useful in most non‐selected patients, in whom the incidence of pancreatitis is 5% or less. However, it could be useful and probably cost‐effective, in patients at high risk for this complication, where the post‐procedure pancreatitis rate is 10% and more.Aim:To assess the efficacy of octreotide in reducing the incidence and severity of post‐ERCP pancreatitis and procedure‐related hospital stay, in subjects with known patient‐related risk factors.Methods:A total of 120 patients were randomly allocated to receive octreotide or not, in a multicentre, randomized, controlled trial. The drug was given subcutaneously, 200 Όg t.d.s., starting 24 h before the ERCP procedure, in patients with either sphincter of Oddi dysfunction, or a history of relapsing pancreatitis or post‐ERCP pancreatitis, or who were aged under 35 years, or who had a small common bile duct diameter (< 8 mm).Results:A total of 114 patients (58 in the octreotide group and 56 in the control group) completed the trial. Post‐procedure pancreatitis occurred in seven octreotide‐treated patients (12.0%) and eight controls (14.3%). The two groups showed no significant differences in the incidence or severity of pancreatitis. Twenty‐four hours after the procedure, severe hyperamylasemia (more than five times the upper normal limit) without pancreatic‐like pain was recorded in three octreotide‐treated patients (5.2%) and six controls (10.7%), the difference being not significant.Conclusion:Twenty‐four‐hour prophylaxis with octreotide proved ineffective in preventing post‐ERCP pancreatitis and in avoiding 24‐h severe hyperamylasemia in high‐risk patients

    The transmission dynamics of Campylobacter jejuni among broilers in semi-commercial farms in Jordan

    Get PDF
    Campylobacter is the leading cause of foodborne bacterial gastroenteritis in humans worldwide, often associated with the consumption of undercooked poultry. In Jordan, the majority of broiler chicken production occurs in semi-commercial farms, where poor housing conditions and low bio-security are likely to promote campylobacter colonisation. While several studies provided estimates of the key parameters describing the within-flock transmission dynamics of campylobacter in typical high-income countries settings, these data are not available for Jordan and Middle-East in general. A Bayesian model framework was applied to a longitudinal dataset on Campylobacter jejuni infection in a Jordan flock to quantify the transmission rate of C. jejuni in broilers within the farm, the day when the flock first became infected, and the within-flock prevalence (WFP) at clearance. Infection with C. jejuni is most likely to have occurred during the first 8 days of the production cycle, followed by a transmission rate value of 0.13 new infections caused by one infected bird/day (95% CI 0.11–0.17), and a WFP at clearance of 34% (95% CI 0.24–0.47). Our results differ from published studies conducted in intensive poultry production systems in high-income countries but are well aligned with the expectations obtained by means of structured questionnaires submitted to academics with expertise on campylobacter in Jordan. This study provides for the first time the most likely estimates and credible intervals of key epidemiological parameters driving the dynamics of C. jejuni infection in broiler production systems commonly found in Jordan and the Middle-East and could be used to inform Quantitative Microbial Risk Assessment models aimed to assess the risk of human exposure/infection to campylobacter through consumption of poultry meat

    A Serpin shapes the extracellular environment to prevent influenza A virus maturation

    Get PDF
    Interferon-stimulated genes (ISGs) act in concert to provide a tight barrier against viruses. Recent studies have shed light on the contribution of individual ISG effectors to the antiviral state, but most have examined those acting on early, intracellular stages of the viral life cycle. Here, we applied an image-based screen to identify ISGs inhibiting late stages of influenza A virus (IAV) infection. We unraveled a directly antiviral function for the gene SERPINE1, encoding plasminogen activator inhibitor 1 (PAI-1). By targeting extracellular airway proteases, PAI-1 inhibits IAV glycoprotein cleavage, thereby reducing infectivity of progeny viruses. This was biologically relevant for IAV restriction in vivo. Further, partial PAI-1 deficiency, attributable to a polymorphism in human SERPINE1, conferred increased susceptibility to IAV in vitro. Together, our findings reveal that manipulating the extracellular environment to inhibit the last step in a virus life cycle is an important mechanism of the antiviral response

    The Transcription Factor E4BP4 Is Not Required for Extramedullary Pathways of NK Cell Development

    Get PDF
    NK cells contribute to antitumor and antiviral immunosurveillance. Their development in the bone marrow (BM) requires the transcription factor E4BP4/NFIL3, but requirements in other organs are less well defined. In this study, we show that CD3−NK1.1+NKp46+CD122+ NK cells of immature phenotype and expressing low eomesodermin levels are found in thymus, spleen, and liver of E4BP4-deficient mice, whereas numbers of mature, eomesoderminhigh conventional NK cells are drastically reduced. E4BP4-deficient CD44+CD25− double-negative 1 thymocytes efficiently develop in vitro into NK cells with kinetics, phenotype, and functionality similar to wild-type controls, whereas no NK cells develop from E4BP4-deficient BM precursors. In E4BP4/Rag-1 double-deficient (DKO) mice, NK cells resembling those in Rag-1–deficient controls are found in similar numbers in the thymus and liver. However, NK precursors are reduced in DKO BM, and no NK cells develop from DKO BM progenitors in vitro. DKO thymocyte precursors readily develop into NK cells, but DKO BM transfers into nude recipients and NK cells in E4BP4/Rag-1/IL-7 triple-KO mice indicated thymus-independent NK cell development. In the presence of T cells or E4BP4-sufficient NK cells, DKO NK cells have a selective disadvantage, and thymic and hepatic DKO NK cells show reduced survival when adoptively transferred into lymphopenic hosts. This correlates with higher apoptosis rates and lower responsiveness to IL-15 in vitro. In conclusion, we demonstrate E4BP4-independent development of NK cells of immature phenotype, reduced fitness, short t1/2, and potential extramedullary origin. Our data identify E4BP4-independent NK cell developmental pathways and a role for E4BP4 in NK cell homeostasis

    Type I interferons drive MAIT cell functions against bacterial pneumonia

    Get PDF
    Mucosal-associated invariant T (MAIT) cells are abundant in the lung and contribute to host defense against infections. During bacterial infections, MAIT cell activation has been proposed to require T cell receptor (TCR)–mediated recognition of antigens derived from the riboflavin synthesis pathway presented by the antigen-presenting molecule MR1. MAIT cells can also be activated by cytokines in an MR1-independent manner, yet the contribution of MR1-dependent vs. -independent signals to MAIT cell functions in vivo remains unclear. Here, we use Klebsiella pneumoniae as a model of bacterial pneumonia and demonstrate that MAIT cell activation is independent of MR1 and primarily driven by type I interferons (IFNs). During Klebsiella infection, type I IFNs stimulate activation of murine and human MAIT cells, induce a Th1/cytotoxic transcriptional program, and modulate MAIT cell location within the lungs. Consequently, adoptive transfer or boosting of pulmonary MAIT cells protect mice from Klebsiella infection, with protection being dependent on direct type I IFN signaling on MAIT cells. These findings reveal type I IFNs as new molecular targets to manipulate MAIT cell functions during bacterial infections
    • 

    corecore