734 research outputs found

    International Congress Against Abuse of Alcohol.

    Get PDF
    n/

    Dihydropteroate synthase gene mutations in Pneumocystis and sulfa resistance

    Get PDF
    Pneumocystis pneumonia (PCP) remains a major cause of illness and death in HIV-infected persons. Sulfa drugs, trimethoprim-sulfamethoxazole (TMP-SMX) and dapsone are mainstays of PCP treatment and prophylaxis. While prophylaxis has reduced the incidence of PCP, its use has raised concerns about development of resistant organisms. The inability to culture human Pneumocystis, Pneumocystis jirovecii, in a standardized culture system prevents routine susceptibility testing and detection of drug resistance. In other microorganisms, sulfa drug resistance has resulted from specific point mutations in the dihydropteroate synthase (DHPS) gene. Similar mutations have been observed in P. jirovecii. Studies have consistently demonstrated a significant association between the use of sulfa drugs for PCP prophylaxis and DHPS gene mutations. Whether these mutations confer resistance to TMP-SMX or dapsone plus trimethoprim for PCP treatment remains unclear. We review studies of DHPS mutations in P. jirovecii and summarize the evidence for resistance to sulfamethoxazole and dapsone

    A proton-coupled conformational switch of Escherichia coli 5S ribosomal RNA.

    Full text link

    Use of Chemical Modification To Elucidate RNA Folding Pathways

    Full text link
    As discussed in this overview, chemical modification is sensitive to the accessibility of a nucleotide to the solvent, and many nucleotides become less accessible as an RNA folds into its structured form. Chemical modification reagents are therefore suitable for following RNA folding, and can be used to study the kinetics of structure formation on time scales ranging from minutes to hours.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/143596/1/cpnc1109.pd

    Adiabatic following criterion, estimation of the nonadiabatic excitation fraction and quantum jumps

    Full text link
    An accurate theory describing adiabatic following of the dark, nonabsorbing state in the three-level system is developed. An analytical solution for the wave function of the particle experiencing Raman excitation is found as an expansion in terms of the time varying nonadiabatic perturbation parameter. The solution can be presented as a sum of adiabatic and nonadiabatic parts. Both are estimated quantitatively. It is shown that the limiting value to which the amplitude of the nonadiabatic part tends is equal to the Fourier component of the nonadiabatic perturbation parameter taken at the Rabi frequency of the Raman excitation. The time scale of the variation of both parts is found. While the adiabatic part of the solution varies slowly and follows the change of the nonadiabatic perturbation parameter, the nonadiabatic part appears almost instantly, revealing a jumpwise transition between the dark and bright states. This jump happens when the nonadiabatic perturbation parameter takes its maximum value.Comment: 33 pages, 8 figures, submitted to PRA on 28 Oct. 200

    Statistical Mechanics for Unstable States in Gel'fand Triplets and Investigations of Parabolic Potential Barriers

    Full text link
    Free energies and other thermodynamical quantities are investigated in canonical and grand canonical ensembles of statistical mechanics involving unstable states which are described by the generalized eigenstates with complex energy eigenvalues in the conjugate space of Gel'fand triplet. The theory is applied to the systems containing parabolic potential barriers (PPB's). The entropy and energy productions from PPB systems are studied. An equilibrium for a chemical process described by reactions A+CB⇄AC+BA+CB\rightleftarrows AC+B is also discussed.Comment: 14 pages, AmS-LaTeX, no figur

    Thermally activated escape rates of uniaxial spin systems with transverse field

    Full text link
    Classical escape rates of uniaxial spin systems are characterized by a prefactor differing from and much smaller than that of the particle problem, since the maximum of the spin energy is attained everywhere on the line of constant latitude: theta=const, 0 =< phi =< 2*pi. If a transverse field is applied, a saddle point of the energy is formed, and high, moderate, and low damping regimes (similar to those for particles) appear. Here we present the first analytical and numerical study of crossovers between the uniaxial and other regimes for spin systems. It is shown that there is one HD-Uniaxial crossover, whereas at low damping the uniaxial and LD regimes are separated by two crossovers.Comment: 4 PR pages, 3 figures, final published versio

    Field dependence of the temperature at the peak of the ZFC magnetization

    Full text link
    The effect of an applied magnetic field on the temperature at the maximum of the ZFC magnetization, MZFCM_{ZFC}, is studied using the recently obtained analytic results of Coffey et al. (Phys. Rev. Lett. {\bf 80}(1998) 5655) for the prefactor of the N\'{e}el relaxation time which allow one to precisely calculate the prefactor in the N\'{e}el-Brown model and thus the blocking temperature as a function of the coefficients of the Taylor series expansion of the magnetocrystalline anisotropy. The present calculations indicate that even a precise determination of the prefactor in the N\'{e}el-Brown theory, which always predicts a monotonic decrease of the relaxation time with increasing field, is insufficient to explain the effect of an applied magnetic field on the temperature at the maximum of the ZFC magnetization. On the other hand, we find that the non linear field-dependence of the magnetization along with the magnetocrystalline anisotropy appears to be of crucial importance to the existence of this maximum.Comment: 14 LaTex209 pages, 6 EPS figures. To appear in J. Phys.: Condensed Matte

    Can the Existence of Dark Energy Be Directly Detected?

    Full text link
    The majority of astronomers and physicists accept the reality of dark energy and also believe that it can only be studied indirectly through observation of the motions of stars and galaxies. In this paper I open the experimental question of whether it is possible to directly detect dark energy through the presence of dark energy density. Two thirds of this paper outlines the major aspects of dark energy density as now comprehended by the astronomical and physics community. The final third summarizes various proposals for direct detection of dark energy density or its possible effects. At this time I do not have a fruitful answer to the question: Can the Existence of Dark Energy Be Directly Detected?Comment: 4 page
    • …
    corecore