45 research outputs found

    Identification and pathogenicity of a natural reassortant between a very virulent serotype 1 infectious bursal disease virus (IBDV) and a serotype 2 IBDV

    Get PDF
    AbstractInfectious bursal disease virus (IBDV) causes an economically important, immunosuppressive disease in chickens. There are two serotypes of the virus that contain a bi-segmented double-stranded RNA genome. In December 2008, the first very virulent (vv)IBDV was identified in California, USA and in 2009 we isolated reassortant viruses in two different locations. Genome segment A of these reassortants was typical of vvIBDV serotype 1 but genome segment B was most similar to IBDV serotype 2. The CA-K785 reassortant caused 20% mortality in chickens but no morbidity or mortality in commercial turkey poults despite being infectious. There have been previous reports of natural reassortants between vvIBDV and other serotype 1 strains, but a natural reassortant between IBDV serotypes 1 and 2 has not been described. The apparent reassorting of California vvIBDV with an endemic serotype 2 virus indicates a common host and suggests vvIBDV may have entered California earlier than originally thought

    Whole genome sequencing and phylogenetic analysis of \u3ci\u3eBluetongue virus\u3c/i\u3e serotype 2 strains isolated in the Americas including a novel strain from the western United States

    Get PDF
    Bluetongue is a potentially fatal arboviral disease of domestic and wild ruminants that is characterized by widespread edema and tissue necrosis. Bluetongue virus (BTV) serotypes 10, 11, 13, and 17 occur throughout much of the United States, whereas serotype 2 (BTV-2) was previously only detected in the southeastern United States. Since 1998, 10 other BTV serotypes have also been isolated from ruminants in the southeastern United States. In 2010, BTV-2 was identified in California for the first time, and preliminary sequence analysis indicated that the virus isolate was closely related to BTV strains circulating in the southeastern United States. In the current study, the whole genome sequence of the California strain of BTV-2 was compared with those of other BTV-2 strains in the Americas. The results of the analysis suggest co-circulation of genetically distinct viruses in the southeastern United States, and further suggest that the 2010 western isolate is closely related to southeastern strains of BTV. Although it remains uncertain as to how this novel virus was translocated to California, the findings of the current study underscore the need for ongoing surveillance of this economically important livestock disease

    Identification and Characterization of a Novel Alpaca Respiratory Coronavirus Most Closely Related to the Human Coronavirus 229E

    Get PDF
    In 2007, a novel coronavirus associated with an acute respiratory disease in alpacas (Alpaca Coronavirus, ACoV) was isolated. Full-length genomic sequencing of the ACoV demonstrated the genome to be consistent with other Alphacoronaviruses. A putative additional open-reading frame was identified between the nucleocapsid gene and 3\u27UTR. The ACoV was genetically most similar to the common human coronavirus (HCoV) 229E with 92.2% nucleotide identity over the entire genome. A comparison of spike gene sequences from ACoV and from HCoV-229E isolates recovered over a span of five decades showed the ACoV to be most similar to viruses isolated in the 1960’s to early 1980’s. The true origin of the ACoV is unknown, however a common ancestor between the ACoV and HCoV-229E appears to have existed prior to the 1960’s, suggesting virus transmission, either as a zoonosis or anthroponosis, has occurred between alpacas and humans

    Emergence of fowl aviadenovirus C-4 in a backyard chicken flock in California.

    No full text
    Fowl aviadenovirus (FAdV) species D and E are associated with inclusion body hepatitis (IBH); species C, serotype 4 (hereafter, FAdV4) is associated with hepatitis-hydropericardium syndrome (HHS) in young chickens. Outbreaks of HHS have led to significant losses in the poultry industry in several countries, predominantly in China. In April 2020, FAdV4 was detected in a remote backyard flock in California. In a mixed flock of chickens of various breeds and ages (6 mo to 2 y old), 7 of 30 were found dead within a week without premonitory signs. One additional bird died after the flock was relocated to fresh pasture, bringing the total mortality to 8 of 30 (27%). Postmortem examination of 3 birds revealed good body condition scores and active laying. One chicken had subtle hemorrhages throughout the liver, and the other 2 had diffusely dark mahogany livers. On histopathology, 2 chickens had hepatic necrosis with hepatocytes containing large, mostly basophilic, intranuclear inclusion bodies, identified by electron microscopy as 82.2-nm diameter adenoviral particles. Virus isolation and genomic sequencing performed on a liver sample revealed strains with 99.9% homology to FAdV4 isolates reported from China. To our knowledge, FAdV4 has not been reported in the United States to date. Furthermore, the chickens affected here were all adults and exhibited a variation of serotype 4 disease in which IBH was present but not hydropericardium

    Identification of high risk areas for avian influenza outbreaks in California using disease distribution models

    No full text
    <div><p>The coexistence of different types of poultry operations such as free range and backyard flocks, large commercial indoor farms and live bird markets, as well as the presence of many areas where wild and domestic birds co-exist, make California susceptible to avian influenza outbreaks. The 2014–2015 highly pathogenic Avian Influenza (HPAI) outbreaks affecting California and other states in the United States have underscored the need for solutions to protect the US poultry industry against this devastating disease. We applied disease distribution models to predict where Avian influenza is likely to occur and the risk for HPAI outbreaks is highest. We used observations on the presence of Low Pathogenic Avian influenza virus (LPAI) in waterfowl or water samples at 355 locations throughout the state and environmental variables relevant to the disease epidemiology. We used two algorithms, Random Forest and MaxEnt, and two data-sets Presence-Background and Presence-Absence data. The models performed well (AUCc > 0.7 for testing data), particularly those using Presence-Background data (AUCc > 0.85). Spatial predictions were similar between algorithms, but there were large differences between the predictions with Presence-Absence and Presence-Background data. Overall, predictors that contributed most to the models included land cover, distance to coast, and broiler farm density. Models successfully identified several counties as high-to-intermediate risk out of the 8 counties with observed outbreaks during the 2014–2015 HPAI epizootics. This study provides further insights into the spatial epidemiology of AI in California, and the high spatial resolution maps may be useful to guide risk-based surveillance and outreach efforts.</p></div
    corecore