34 research outputs found

    Bat Occupancy Estimates and Species Richness at Cache River National Wildlife Refuge

    Get PDF
    Six bat species of special concern, threatened or endangered, may occur in one of Arkansas’ largest bottomland hardwood forests, the Cache River National Wildlife Refuge (CRNWR). However, inventory of bat species throughout the refuge has been lacking and management plans may not be adequate in promoting bat conservation. The objectives of this study were to inventory bat species in the CRNWR, and determine bat-habitat associations via occupancy estimates. From May–August 2014 and 2015, we mist-netted from sunset for 5 hours. We also deployed bioacoustic devices throughout 5 habitat types (cypress-tupelo [dominantly Taxodium distichum and Nyssa aquatica], emergent wetland, mature forest, hardwood reforestation, and managed hardwood). Mist-netting yielded 460 bat captures with Rafinesque’s big-eared bats (Corynorhinus rafinesquii; n = 156) being the most common capture, followed by eastern red bats (Lasiurus borealis; n = 104), southeastern myotis (Myotis austroriparius; n = 91), evening bats (Nycticeius humeralis; n = 58), tri-colored bats (Perimyotis subflavus; n = 54), and a big-brown bat (Eptesicus fuscus; n = 1). Based on 3,896 calls identified with 85% certainty, evening bats and rarer big-brown bats tended to occupy managed hardwood forests more than any other habitat (occupancy probabilities ± SE: Ψ = 0.75 ± 0.13 and 0.38 ± 0.19, respectively). Tri-colored bats tended to be more present in mature forest habitats (Ψ = 0.91 ± 0.09), and Myotis species tended to have highest occupancy rates in cypress-tupelo stands (Ψ = 0.59 ± 0.15). Not all species were detected with both methods. Thus, we encourage future studies to combine mist-netting and acoustic surveying methods to minimize bias in species presence estimate. This would ensure management practices that would benefit all present species

    An Enigmatic 380 kpc Long Linear Collimated Galactic Tail

    Full text link
    We present an intriguing, serendipitously-detected system consisting of an S0/a galaxy, which we refer to as the "Kite", and a highly-collimated tail of gas and stars that extends over 380 kpc and contains pockets of star formation. In its length, narrowness, and linearity the Kite's tail is an extreme example relative to known tails. The Kite (PGC 1000273) has a companion galaxy, Mrk 0926 (PGC 070409), which together comprise a binary galaxy system in which both galaxies host active galactic nuclei. Despite this systems being previously searched for signs of tidal interactions, the tail had not been discovered prior to our identification as part of the validation process of the SMUDGes survey for low surface brightness galaxies. We confirm the kinematic association between various Hα\alpha knots along the tail, a small galaxy, and the Kite galaxy using optical spectroscopy obtained with the Magellan telescope and measure a velocity gradient along the tail. The Kite shares characteristics common to those formed via ram pressure stripping ("jellyfish" galaxies) and formed via tidal interactions. However, both scenarios face significant challenges that we discuss, leaving open the question of how such an extreme tail formed. We propose that the tail resulted from a three-body interaction from which the lowest-mass galaxy was ejected at high velocity.Comment: Submitted to publication in MNRAS (comments welcome

    Diverse peptide hormones affecting root growth identified in the Medicago truncatula secreted peptidome

    Get PDF
    Multigene families encoding diverse secreted peptide hormones play important roles in plant development. A need exists to efficiently elucidate the structures and post-translational-modifications of these difficult-to-isolate peptide hormones in planta so that their biological functions can be determined. A mass spectrometry and bioinformatics approach was developed to comprehensively analyze the secreted peptidome of Medicago hairy root cultures and xylem sap. We identified 759 spectra corresponding to the secreted products of twelve peptide hormones including four CEP (C-TERMINALLY ENCODED PEPTIDE), two CLE (CLV3/ENDOSPERM SURROUNDING REGION RELATED) and six XAP (XYLEM SAP ASSOCIATED PEPTIDE) peptides. The MtCEP1, MtCEP2, MtCEP5 and MtCEP8 peptides identified differed in post-translational-modifications. Most were hydroxylated at conserved proline residues but some MtCEP1 derivatives were tri-arabinosylated. In addition, many CEP peptides possessed unexpected N- and C-terminal extensions. The pattern of these extensions suggested roles for endo- and exoproteases in CEP peptide maturation. Longer than expected, hydroxylated and homogeneously modified mono- and tri-arabinosylated CEP peptides corresponding to their in vivo structures were chemically synthesized to probe the effect of these post-translational-modifications on function. The ability of CEP peptides to elevate root nodule number was increased by hydroxylation at key positions. MtCEP1 peptides with N-terminal extensions or with tri-arabinosylation modification, however, were unable to impart increased nodulation. The MtCLE5 and MtCLE17 peptides identified were of precise size, and inhibited main root growth and increased lateral root number. Six XAP peptides, each beginning with a conserved DY sulfation motif, were identified including MtXAP1a, MtXAP1b, MtXAP1c, MtXAP3, MtXAP5 and MtXAP7. MtXAP1a and MtXAP5 inhibited lateral root emergence. Transcriptional analyses demonstrated peptide hormone gene expression in the root vasculature and tip. Since hairy roots can be induced on many plants, their corresponding root cultures may represent ideal source materials to efficiently identify diverse peptide hormones in vivo in a broad range of species.This work was supported by ARC grants to MAD: DP150104050 and LP150100826. NP was partly supported by an Endeavor Fellowship. NAMR was supported by an ANU Ph.D. scholarship supported by DP120101893. AI was supported by an Australian Post-graduate Award and an AW Howard Memorial Award. LC was supported by the Bruce-Veness Chandler and the John A. Lamberton research scholarship

    The molecular details of a novel phosphorylation-dependent interaction between MRN and the SOSS complex

    Get PDF
    The repair of double-strand DNA breaks (DSBs) by homologous recombination is crucial in the maintenance of genome integrity. While the key role of the Mre11-Rad50-Nbs1 (MRN) complex in repair is well known, hSSB1 (SOSSB and OBFC2B), one of the main components of the sensor of single-stranded DNA (SOSS) protein complex, has also been shown to rapidly localize to DSB breaks and promote repair. We have previously demonstrated that hSSB1 binds directly to Nbs1, a component of the MRN complex, in a DNA damage-independent manner. However, recruitment of the MRN complex has also been demonstrated by an interaction between Integrator Complex Subunit 3 (INTS3; also known as SOSSA), another member of the SOSS complex, and Nbs1. In this study, we utilize a combined approach of in silico, biochemical, and functional experiments to uncover the molecular details of INTS3 binding to Nbs1. We demonstrate that the forkhead-associated domain of Nbs1 interacts with INTS3 via phosphorylation-dependent binding to INTS3 at Threonine 592, with contributions from Serine 590. Based on these data, we propose a model of MRN recruitment to a DSB via INTS3

    Functional impact of global rare copy number variation in autism spectrum disorders

    Get PDF
    The autism spectrum disorders (ASDs) are a group of conditions characterized by impairments in reciprocal social interaction and communication, and the presence of restricted and repetitive behaviors1. Individuals with an ASD vary greatly in cognitive development, which can range from above average to intellectual disability (ID)2. While ASDs are known to be highly heritable (~90%)3, the underlying genetic determinants are still largely unknown. Here, we analyzed the genome-wide characteristics of rare (<1% frequency) copy number variation (CNV) in ASD using dense genotyping arrays. When comparing 996 ASD individuals of European ancestry to 1,287 matched controls, cases were found to carry a higher global burden of rare, genic CNVs (1.19 fold, P= 0.012), especially so for loci previously implicated in either ASD and/or intellectual disability (1.69 fold, P= 3.4×10−4). Among the CNVs, there were numerous de novo and inherited events, sometimes in combination in a given family, implicating many novel ASD genes like SHANK2, SYNGAP1, DLGAP2 and the X-linked DDX53-PTCHD1 locus. We also discovered an enrichment of CNVs disrupting functional gene-sets involved in cellular proliferation, projection and motility, and GTPase/Ras signaling. Our results reveal many new genetic and functional targets in ASD that may lead to final connected pathways

    Raccoon Predation as a Potential Limiting Factor in the Success of the Green Iguana in Southern Florida

    Get PDF
    The Green Iguana, Iguana iguana, is a well established, large-bodied, exotic species in Florida (Meshaka et al. 2004a. The Exotic Amphibians and Reptiles of Florida, Krieger Publishing Company, Malabar, Florida. 155 pp.; Meshaka et al. 2004b. Iguana 11:154-161). Limiting factors of populations and causes of Green Iguana mortality in Florida are poorly understood and the only documented predators are the domestic dog (Canus familiaris) (Meshaka et al. 2004a), Yellow-crowned Night-heron (Nyctanassa violacea) (Engeman et al. 2005. Herpetol. Rev. 36:320), Florida Burrowing Owl (Athene cunicularia floridana) (McKie et al. 2005. Florida Field Nat. 33:125-127), and an unidentified species of hawk (HTS pers. obs.). Here, we report the first documented predation of a juvenile Green Iguana by a Raccoon (Procyon lotor) in a southern Florida state park. Additionally, we provide strong evidence of Green Iguana population density and recruitment suppression by Raccoons

    The nuclear proteome and DNA-binding fraction of human Raji lymphoma cells

    No full text
    Purification of organelles and analysis of their proteins is an important initial step for biological proteomics, simplifying the proteome prior to analysis by established techniques such as two-dimensional liquid chromatography (2-DLC) or two-dimensional gel electrophoresis (2-DE). Nuclear proteins play a central role in regulating gene expression, but are often under-represented in proteomic studies due to their lower abundance in comparison to cellular 'housekeeping' metabolic enzymes and structural proteins. A reliable procedure for separation and proteomic analysis of nuclear proteins would be useful for investigations of cell proliferation and differentiation during disease processes (e.g., human cancer). In this study, we have purified nuclei from the human Burkitt's lymphoma B-cell line, Raji, using sucrose density gradient centrifugation. The integrity and purity of the nuclei were assessed by light microscopy and proteins from the nuclear fractions were separated by 2-DE and identified using matrix assisted laser desorption ionization mass spectrometry (MALDI-MS). A total of 124 unique proteins were identified, of which 91% (n = 110) were predicted to be nuclear using PSORT. Proteins from the nuclear fraction were subjected to affinity chromatography on DNA-agarose to isolate DNA-binding proteins. From this purified fraction, 131 unique proteins were identified, of which 69% (n = 90) were known or predicted DNA-binding proteins. Purification of nuclei and subsequent enrichment of DNA-binding proteins allowed identification of a total of 209 unique proteins, many involved in transcription and/or correlated with lymphoma, leukemia or cancer in general. The data obtained should be valuable for identification of biomarkers and targets for cancer therapy, and for furthering our understanding of the molecular mechanisms underlying lymphoma development and progression.20 page(s

    Functional Characterization of OXA-57, a Class D β-Lactamase from Burkholderia pseudomallei

    No full text
    Class D β-lactamase OXA-57 was identified in a range of isolates of Burkholderia pseudomallei and Burkholderia thailandensis. Comparative kinetic analyses of wild-type and mutant forms of B. pseudomallei OXA-57 are reported. Implications of these data for β-lactam resistance and the proposed role of Ser-104 in β-lactam hydrolysis are discussed

    Fludarabine and Cladribine Induce Changes in Surface Proteins on Human B‑Lymphoid Cell Lines Involved with Apoptosis, Cell Survival, and Antitumor Immunity

    No full text
    Fludarabine and cladribine are purine analogues used to treat hematological malignancies. Alone or in combination with therapeutic antibodies, they are effective in treating patients with chronic lymphocytic leukemia and non-Hodgkin's lymphoma. However, the mechanisms of action of these drugs are not well understood. Plasma membrane proteins perform a variety of essential functions that can be affected by malignancy and perturbed by chemotherapy. Analysis of surface proteins may contribute to an understanding of the mechanisms of action of purine analogues and identify biomarkers for targeted therapy. The surface of human cells is rich in N-linked glycoproteins, enabling use of a hydrazide-coupling technique to enrich for glycoproteins, with iTRAQ labeling for quantitative comparison. A number of plasma membrane proteins on human leukemia and lymphoma cells were affected by treatment with a purine analogue, including decreases in CD22 (an adhesion and signaling molecule) and increases in CD205 (a “damaged cell marker”) and CD80 and CD50 (T-cell interaction molecules). Purine analogues may affect B-cell receptor (BCR) signaling and costimulatory molecules, leading to multiple signals for apoptosis and cell clearance. Fludarabine and cladribine induce differential effects, with some cell survival proteins (ECE-1 and CD100) more abundant after fludarabine treatment. Cell surface proteins induced by fludarabine and cladribine may be targets for therapeutic antibodies
    corecore