1,575 research outputs found

    Spatial and temporal expression of the 23 murine Prolactin/Placental Lactogen-related genes is not associated with their position in the locus

    Get PDF
    Background: The Prolactin (PRL) hormone gene family shows considerable variation among placental mammals. Whereas there is a single PRL gene in humans that is expressed by the pituitary, there are an additional 22 genes in mice including the placental lactogens (PL) and Prolactin-related proteins (PLPs) whose expression is limited to the placenta. To understand the regulation and potential functions of these genes, we conducted a detailed temporal and spatial expression study in the placenta between embryonic days 7.5 and E18.5 in three genetic strains

    "Making Safety Happen" Through Probabilistic Risk Assessment at NASA

    Get PDF
    NASA is using Probabilistic Risk Assessment (PRA) as one of the tools in its Safety & Mission Assurance (S&MA) tool belt to identify and quantify risks associated with human spaceflight. This paper discusses some of the challenges and benefits associated with developing and using PRA for NASA human space programs. Some programs have entered operation prior to developing a PRA, while some have implemented PRA from the start of the program. It has been observed that the earlier a design change is made in the concept or design phase, the less impact it has on cost and schedule. Not finding risks until the operation phase yields much costlier design changes and major delays, which can result in discussions of just accepting the risk. Risk contributors identified by PRA are not just associated with hardware failures. They include but are not limited to crew fatality due to medical causes, the environment the vehicle and crew are exposed to, the software being used, and the reliability of the crew performing required actions. Some programs have entered operation prior to developing a PRA, and while PRA can still provide a benefit for operations and future design trades, the benefit of implementing PRA from the start of the program provides the added benefit of informing design and reducing risk early in program development. Currently, NASAs International Space Station (ISS) program is in its 20th year of on-orbit operations around the Earth and has several new programs in the design phase preparing to enter the operation phase all of which have active (or living) PRAs. These programs incorporate PRA as part of their Risk-Informed, Decision-Making (RIDM) process. For new NASA human spaceflight programs discussion begins with mission concept, establishing requirements, forming the PRA team, and continues through the design cycles into the operational phase. Several examples of PRA related applications and observed lessons are included

    Gene dosage-dependent functions for phosphotyrosine-Grb2 signaling during mammalian tissue morphogenesis

    Get PDF
    AbstractBackground: The mammalian Grb2 adaptor protein binds pTyr-X-Asn motifs through its SH2 domain, and engages downstream targets such as Sos1 and Gab1 through its SH3 domains. Grb2 thereby couples receptor tyrosine kinases to the Ras-MAP kinase pathway, and potentially to phosphatidylinositol (PI) 3′-kinase. By creating a null (Δ) allele of mouse Grb2, we have shown that Grb2 is required for endoderm differentiation at embryonic day 4.0.Results: Grb2 likely has multiple embryonic and postnatal functions. To address this issue, a hypomorphic mutation, first characterized in the Caenorhabditis elegans Grb2 ortholog Sem-5, was engineered into the mouse Grb2 gene. This mutation (E89K) reduces phosphotyrosine binding by the SH2 domain. Embryos that are compound heterozygous for the null and hypomorphic alleles exhibit defects in placental morphogenesis and in the survival of a subset of migrating neural crest cells required for branchial arch formation. Furthermore, animals homozygous for the hypomorphic mutation die perinatally because of clefting of the palate, a branchial arch-derived structure. Analysis of E89K/Δ Grb2 mutant fibroblasts revealed a marked defect in ERK/MAP kinase activation and Gab1 tyrosine phosphorylation following growth factor stimulation.Conclusions: We have created an allelic series within mouse Grb2, which has revealed distinct functions for phosphotyrosine-Grb2 signaling in tissue morphogenesis and cell viability necessary for mammalian development. The placental defects in E89K/Δ mutant embryos are reminiscent of those seen in receptor tyrosine kinase-, Sos1-, and Gab1-deficient embryos, consistent with the finding that endogenous Grb2 is required for efficient RTK signaling to the Ras-MAP kinase and Gab1 pathways

    Book Reviews

    Get PDF

    Deep Markov Random Field for Image Modeling

    Full text link
    Markov Random Fields (MRFs), a formulation widely used in generative image modeling, have long been plagued by the lack of expressive power. This issue is primarily due to the fact that conventional MRFs formulations tend to use simplistic factors to capture local patterns. In this paper, we move beyond such limitations, and propose a novel MRF model that uses fully-connected neurons to express the complex interactions among pixels. Through theoretical analysis, we reveal an inherent connection between this model and recurrent neural networks, and thereon derive an approximated feed-forward network that couples multiple RNNs along opposite directions. This formulation combines the expressive power of deep neural networks and the cyclic dependency structure of MRF in a unified model, bringing the modeling capability to a new level. The feed-forward approximation also allows it to be efficiently learned from data. Experimental results on a variety of low-level vision tasks show notable improvement over state-of-the-arts.Comment: Accepted at ECCV 201

    Online measurements of the emissions of intermediate-volatility and semi-volatile organic compounds from aircraft

    Get PDF
    A detailed understanding of the climate and air quality impacts of aviation requires measurements of the emissions of intermediate-volatility and semi-volatile organic compounds (I/SVOCs) from aircraft. Currently both the amount and chemical composition of aircraft I/SVOC emissions remain poorly characterized. Here we characterize I/SVOC emissions from aircraft, using a novel instrument for the online, quantitative measurement of the mass loading and composition of low-volatility organic vapors. Emissions from the NASA DC8 aircraft were sampled on the ground 143 m downwind of the engines and characterized as a function of engine power from idle (4% maximum rated thrust) through 85% power. Results show that I/SVOC emissions are highest during engine idle operating conditions, with decreasing but non-zero I/SVOC emissions at higher engine powers. Comparison of I/SVOC emissions with total hydrocarbon (THC) measurements, VOC measurements, and an established emissions profile indicates that I/SVOCs comprise 10–20% of the total organic gas-phase emissions at idle, and an increasing fraction of the total gas-phase organic emissions at higher powers. Positive matrix factorization of online mass spectra is used to identify three distinct types of I/SVOC emissions: aliphatic, aromatic and oxygenated. The volatility and chemical composition of the emissions suggest that unburned fuel is the dominant source of I/SVOCs at idle, while pyrolysis products make up an increasing fraction of the I/SVOCs at higher powers. Oxygenated I/SVOC emissions were detected at lower engine powers (≤30%) and may be linked to cracked, partially oxidized or unburned fuel components.United States. Dept. of Energy. Office of Science (Small Business Innovation Research Program Grant DE-SC0001666)United States. Environmental Protection Agency (National Center for Environmental Research Grant RD834560

    CD97 stabilises the immunological synapse between dendritic cells and T cells and is targeted for degradation by the Salmonella effector SteD.

    Get PDF
    The Salmonella enterica effector SteD depletes mature MHC class II (mMHCII) molecules from the surface of infected antigen-presenting cells through ubiquitination of the cytoplasmic tail of the mMHCII β chain. This requires the Nedd4 family HECT E3 ubiquitin ligase Wwp2 and a tumor-suppressing transmembrane protein adaptor Tmem127. Here, through a proteomic screen of dendritic cells, we found that SteD targets the plasma membrane protein CD97 for degradation by a similar mechanism. SteD enhanced ubiquitination of CD97 on K555 and mutation of this residue eliminated the effect of SteD on CD97 surface levels. We showed that CD97 localises to and stabilises the immunological synapse between dendritic cells and T cells. Removal of CD97 by SteD inhibited dendritic cell-T cell interactions and reduced T cell activation, independently of its effect on MHCII. Therefore, SteD suppresses T cell immunity by two distinct processes

    Dark blood late enhancement imaging.

    Get PDF
    Background Bright blood late gadolinium enhancement (LGE) imaging typically achieves excellent contrast between infarcted and normal myocardium. However, the contrast between the myocardial infarction (MI) and the blood pool is frequently suboptimal. A large fraction of infarctions caused by coronary artery disease are sub-endocardial and thus adjacent to the blood pool. It is not infrequent that sub-endocardial MIs are difficult to detect or clearly delineate. Methods In this present work, an inversion recovery (IR) T2 preparation was combined with single shot steady state free precession imaging and respiratory motion corrected averaging to achieve dark blood LGE images with good signal to noise ratio while maintaining the desired spatial and temporal resolution. In this manner, imaging was conducted free-breathing, which has benefits for image quality, patient comfort, and clinical workflow in both adults and children. Furthermore, by using a phase sensitive inversion recovery reconstruction the blood signal may be made darker than the myocardium (i.e., negative signal values) thereby providing contrast between the blood and both the MI and remote myocardium. In the proposed approach, a single T1-map scout was used to measure the myocardial and blood T1 using a MOdified Look-Locker Inversion recovery (MOLLI) protocol and all protocol parameters were automatically calculated from these values within the sequence thereby simplifying the user interface. Results The contrast to noise ratio (CNR) between MI and remote myocardium was measured in n = 30 subjects with subendocardial MI using both bright blood and dark blood protocols. The CNR for the dark blood protocol had a 13 % loss compared to the bright blood protocol. The CNR between the MI and blood pool was positive for all dark blood cases, and was negative in 63 % of the bright blood cases. The conspicuity of subendocardial fibrosis and MI was greatly improved by dark blood (DB) PSIR as well as the delineation of the subendocardial border. Conclusions Free-breathing, dark blood PSIR LGE imaging was demonstrated to improve the visualization of subendocardial MI and fibrosis in cases with low contrast with adjacent blood pool. The proposed method also improves visualization of thin walled fibrous structures such as atrial walls and valves, as well as papillary muscles
    • …
    corecore