538 research outputs found

    Music Score Approval Plans in Research Libraries: A Survey of Librarian Satisfaction With and Without Approval Plans

    Get PDF
    In this study, the researchers submitted a music score approval plan survey to all ARL libraries. Two surveys were created, one for libraries with music score approval plans, one for those without. Forty-four surveys were returned. The authors’ purpose was to analyze and discuss the survey results, incorporating elements of the scholarly work preceding this study. Discussions, roundtables, and listservs participated in by music librarians over the years formed the basis of the topic at hand. The goal was to ascertain whether these discussions and underlying assumptions of approval plans held true to the real world

    How does viscosity contrast influence phase mixing and strain localization?

    Get PDF
    Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Solid Earth 125 (2020): e2020JB020323, doi: 10.1029/2020JB020323.Ultramylonites—intensely deformed rocks with fine grain sizes and well‐mixed mineral phases—are thought to be a key component of Earth‐like plate tectonics, because coupled phase mixing and grain boundary pinning enable rocks to deform by grain‐size‐sensitive, self‐softening creep mechanisms over long geologic timescales. In isoviscous two‐phase composites, “geometric” phase mixing occurs via the sequential formation, attenuation (stretching), and disaggregation of compositional layering. However, the effects of viscosity contrast on the mechanisms and timescales for geometric mixing are poorly understood. Here, we describe a series of high‐strain torsion experiments on nonisoviscous calcite‐fluorite composites (viscosity contrast, ηca/ηfl ≈ 200) at 500°C, 0.75 GPa confining pressure, and 10−6–10−4 s−1 shear strain rate. At low to intermediate shear strains (Îł ≀ 10), polycrystalline domains of the individual phases become sheared and form compositional layering. As layering develops, strain localizes into the weaker phase, fluorite. Strain partitioning impedes mixing by reducing the rate at which the stronger (calcite) layers deform, attenuate, and disaggregate. Even at very large shear strains (Îł ≄ 50), grain‐scale mixing is limited, and thick compositional layers are preserved. Our experiments (1) demonstrate that viscosity contrasts impede mechanical phase mixing and (2) highlight the relative inefficiency of mechanical mixing. Nevertheless, by employing laboratory flow laws, we show that “ideal” conditions for mechanical phase mixing may be found in the wet middle to lower continental crust and in the dry mantle lithosphere, where quartz‐feldspar and olivine‐pyroxene viscosity contrasts are minimized, respectively.This work was funded through a National Science Foundation grant (EAR‐1352306) awarded to P. S., with additional support for A. J. C. provided by the McDonnell Center for the Space Sciences (Washington University in St. Louis), the J. Lamar Worzel Assistant Scientist Fund (WHOI), and the Penzance Endowed Fund in Support of Assistant Scientists (WHOI). Partial support for electron microscopy was provided by the Institute of Materials Science and Engineering (Washington University in St. Louis).2021-02-0

    STUDIES ON THE RECOVERY OF THE IMMUNE RESPONSE IN IRRADIATED MICE THYMECTOMIZED IN ADULT LIFE

    Get PDF
    Experiments performed on CBA mice thymectomized in adult life, exposed to lethal doses of irradiation and given tissue therapy are described. Marrow, foetal liver, or spleen cells from syngeneic donors could protect the mice against the lethal effects of irradiation. Between 30 and 70 days' postirradiation, however, marrow-treated, thymectomized irradiated mice showed evidence of trophic disturbances, such as failure to gain weight, in contrast to sham-operated, irradiated, marrow-treated controls. The immune responses of experimental and control mice were tested up to 150 days' postirradiation by challenging with sheep erythrocytes and allogeneic skin grafts. Sham-operated irradiated controls, whether protected with marrow, foetal liver, or spleen cells, produced normal immune responses when challenged at 28, 60, or 150 days after irradiation. Neither foetal liver cells nor marrow cells, in doses of up to 40 million cells per mouse, enabled thymectomized irradiated mice to recover normal immune functions. Spleen cells, from normal donors but not from neonatally thymectomized donors, restored immunological capacity in such mice. It is concluded that immunologically competent cells are present in the spleen of normal adult donors and can function in the absence of the thymus. Bone marrow, on the other hand, does not contain an adequate population of such cells but has lymphoid precursor cells, the descendants of which can become immunologically competent only in the presence of a functioning thymus mechanism

    A spectrum of physics-informed Gaussian processes for regression in engineering

    Full text link
    Despite the growing availability of sensing and data in general, we remain unable to fully characterise many in-service engineering systems and structures from a purely data-driven approach. The vast data and resources available to capture human activity are unmatched in our engineered world, and, even in cases where data could be referred to as ``big,'' they will rarely hold information across operational windows or life spans. This paper pursues the combination of machine learning technology and physics-based reasoning to enhance our ability to make predictive models with limited data. By explicitly linking the physics-based view of stochastic processes with a data-based regression approach, a spectrum of possible Gaussian process models are introduced that enable the incorporation of different levels of expert knowledge of a system. Examples illustrate how these approaches can significantly reduce reliance on data collection whilst also increasing the interpretability of the model, another important consideration in this context

    What is the prevalence, and what are the clinical correlates, of insulin resistance in young people presenting for mental health care? A cross-sectional study

    Get PDF
    Objectives: To report the distribution and predictors of insulin resistance (IR) in young people presenting to primary care-based mental health services. Design: Cross-sectional. Setting: Headspace-linked clinics operated by the Brain and Mind Centre of the University of Sydney. Participants: 768 young people (66% female, mean age 19.7±3.5, range 12–30 years). Main outcome measures: IR was estimated using the updated homeostatic model assessment (HOMA2-IR). Height and weight were collected from direct measurement or self-report for body mass index (BMI). Results: For BMI, 20.6% of the cohort were overweight and 10.2% were obese. However,6.9 mmol/L). By contrast, 9.9% had a HOMA2-IR score \u3e2.0 (suggesting development of IR) and 11.7% (n=90) had a score between 1.5 and 2. Further, there was a positive correlation between BMI and HOMA2-IR (r=0.44, p Conclusions: Emerging IR is evident in a significant subgroup of young people presenting to primary care based mental health services. While the major modifiable risk factor is BMI, a large proportion of the variance is not accounted for by other demographic, clinical or treatment factors. Given the early emergence of IR, secondary prevention interventions may need to commence prior to the development of full-threshold or major mood or psychotic disorders
    • 

    corecore