11,728 research outputs found
Measurements of wave height statistics and radar, cross-section in a wind wave tank
There is currently wide interest among oceanographers and meteorologists in remote sensing of ocean surface characteristics. A wind wave tank developed at Langley Research Center is used to evaluate various remote sensing techniques based on electromagnetic scattering phenomena, and in the development and evaluation of theoretical scattering models. The wave tank is described, the statistics of the rough water surface are documented, and microwave radar cross-section measurement results are presented. The water surface statistics are similar in key respects to the open ocean, and the microwave scattering measurements show, qualitatively, theoretically predicted large and small scale scattering effects
Cylindrical, periodic surface lattice — theory, dispersion analysis, and experiment
A two-dimensional surface lattice of cylindrical topology obtained via perturbing the inner surface of a cylinder is considered. Periodic perturbations of the surface lead to observation of high-impedance, dielectric-like media and resonant coupling of surface and non-propagating volume fields. This allows synthesis of tailored-for-purpose "coating" material with dispersion suitable, for instance, to mediate a Cherenkov type interaction. An analytical model of the lattice is discussed and coupled-wave equations are derived. Variations of the lattice dispersive properties with variation of parameters are shown, illustrating the tailoring of the structure's electromagnetic properties. Experimental results are presented showing agreement with the theoretical model
Defect Dynamics for Spiral Chaos in Rayleigh-Benard Convection
A theory of the novel spiral chaos state recently observed in Rayleigh-Benard
convection is proposed in terms of the importance of invasive defects i.e
defects that through their intrinsic dynamics expand to take over the system.
The motion of the spiral defects is shown to be dominated by wave vector
frustration, rather than a rotational motion driven by a vertical vorticity
field. This leads to a continuum of spiral frequencies, and a spiral may rotate
in either sense depending on the wave vector of its local environment. Results
of extensive numerical work on equations modelling the convection system
provide some confirmation of these ideas.Comment: Revtex (15 pages) with 4 encoded Postscript figures appende
Domain Coarsening in Systems Far from Equilibrium
The growth of domains of stripes evolving from random initial conditions is
studied in numerical simulations of models of systems far from equilibrium such
as Rayleigh-Benard convection. The scaling of the size of the domains deduced
from the inverse width of the Fourier spectrum is studied for both potential
and nonpotential models. The morphology of the domains and the defect
structures are however quite different in the two cases, and evidence is
presented for a second length scale in the nonpotential case.Comment: 11 pages, RevTeX; 3 uufiles encoded postscript figures appende
Full scale visualization of the wing tip vortices generated by a typical agricultural aircraft
The trajectories of the wing tip vortices of a typical agricultural aircraft were experimentally determined by flight test. A flow visualization method, similar to the vapor screen method used in wind tunnels, was used to obtain trajectory data for a range of flight speeds, airplane configurations, and wing loadings. Detailed measurements of the spanwise surface pressure distribution were made for all test points. Further, a powered 1/8 scale model of the aircraft was designed, built, and used to obtain tip vortex trajectory data under conditions similar to that of the full-scale test. The effects of light wind on the vortices were demonstrated, and the interaction of the flap vortex and the tip vortex was clearly shown in photographs and plotted trajectory data
Weakly Nonlinear Analysis of Electroconvection in a Suspended Fluid Film
It has been experimentally observed that weakly conducting suspended films of
smectic liquid crystals undergo electroconvection when subjected to a large
enough potential difference. The resulting counter-rotating vortices form a
very simple convection pattern and exhibit a variety of interesting nonlinear
effects. The linear stability problem for this system has recently been solved.
The convection mechanism, which involves charge separation at the free surfaces
of the film, is applicable to any sufficiently two-dimensional fluid. In this
paper, we derive an amplitude equation which describes the weakly nonlinear
regime, by starting from the basic electrohydrodynamic equations. This regime
has been the subject of several recent experimental studies. The lowest order
amplitude equation we derive is of the Ginzburg-Landau form, and describes a
forward bifurcation as is observed experimentally. The coefficients of the
amplitude equation are calculated and compared with the values independently
deduced from the linear stability calculation.Comment: 26 pages, 2 included eps figures, submitted to Phys Rev E. For more
information, see http://mobydick.physics.utoronto.c
The prevalence of occult hepatitis B virus (hbv) infection in a large multi-ethnic haemodialysis cohort.
Haemodialysis patients are at increased risk of exposure to blood borne viruses. To reduce transmission in the UK, all haemodialysis patients are regularly screened, and if susceptible to Hepatitis B virus (HBV) infection, vaccinated
- …