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Abstract

- The trajectories of the wing tip vortices of a typical agricultural
aircraft were experimentaliy detemined by flight test. A flow visualization
method, similar to the vapor screen method used in wind tunnels, was used
tﬂ' obtain trajectory data for a range of flight speeds, airplane configuratiqps,
and wing loadings. Detailed measurements of the spanwise surface pressure
distribution were made for all test points. Further, a powered 1/8 scale
model of the aircraft was designed, built, and used to obtain tip vortex
tra,jéctory data under conditions similar to that of the full scale te.;.t.

The effects of light wind on the vortices were demonstrated, and the inter-
action of the flap vortex and the tip vortex was clearly shown in photographs

and plotted trajectory data.
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| DISCLAIMER
| ~ The use of brand names in this report is for the purpose of

identifying the particular airplane used to conduct this research.

This use does not constitute endorsement of any product, either
j explicitly or implicitly.
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S o CONVERSION CONSTANTS T
| The primary units used in this report are U.S, Customary. The i
,. constants 1isted below can be used to convert to SI units.
| ) , oo T ‘ [ ‘f
] To convert from  to . multiply by 1
) - * Foot . Meter 3048 ‘
Horsepower WATT 745.69987 M‘ l
; Pound/FT2 Newton/M®  47.88026 |
| Slug/FT3 kg/M3 515,379 . ‘
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“ant, and the performance influence that each has on the others must be

1. INTRODUCTION

During the past decade, the use of aircraft for the application of a
wide variety of chemicals to crop and forest lands has increased to sig-
ﬁificant proportions. The agricultural aircraft has become an essential
element for the high level of farm productivity realized in the United
States. The world-wide demand for food has in turn provided the U.S. with
a mgrket of such magnitude that this productivity can become one of our
Aost valuable resources. Thus, the agplane and its associated technology
Jave taken on a measurable national level of importance. This has led to
a renewed interest by the government in adyanging the state of this tech-
nology through the establishment of a reéeérch progfam it»ﬁASifiiﬁgTéff;;;~—
Research Center (NASA-LRC).

There are many technical problems associated with agricultural aviation
that influence productivity and effectiveness and involve important environ?
mental factors. These problems can be categorized as those which pertain |
separately to the aircraft, the dispensing equipment, and the integra-
tion of this and other special equipment with the aircrafﬁf The strong
technology base needed for the next generation of agricultural aircraft

|
Heavy emphasis must be put on an experimental program because of the

will require an intensive coordinated theoretical and experimental program;:

extremely complicated nature of the physical processes involved. The inter-
action that occurs between the aircraft, dispersal equipment and dispers- !
investigated as a total system.

Such a program is presently underway at NASA-LRC and, in part, utilizes
small scale model testing in the Vortex Research Facility (1). Flow visuali-

zation and, subsequently, laser Doppler velocimeter studies of the model




aircraft wake constitute the experimental method. The use of small scale
testing for investigations of this type is essential because of the large

amohnt of configuration-dependent information which can be obtained for

relatively low cost. However, the validity of this information rests upon

the'dégree to which correlation can be developed with full scale data.

. _The Raspet Flight Research Laboratory at Mississippi State Universitg

(MSU) has developed a full scale flow visualization method with which such

J correlation investigation can be performed (2).- The visual data is ma

format similar to that being used at the Vortex Research Facility and a
direct comparison can be made on this basis.

- This report presents the results of an investigation of the wing tip
vortex trajectory of a full scale Cessna A188 Agwagon and a 1/8 scale model
of the Agwagon. Also, effect of the ground plane and surface winds on the
behavior of the trailing vortices near the ground was briefly investigated.
The scope of the program was limited to acquiring the test data and did not
q11ow a significant amount of analysis to be performed. The discussion
presented in this report is intended to provide sufficient information to
define the pertinent test conditions and to provide those observations that
were noted during the performance of the test'p(ogram and the subseqdeni

efforts to present the test data in its most representative form,
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I1. FULL SCALE FLIGHT TESTS .

Wing span-wise pressure distributions and wing tip vortex trajectories
urre experimentally determined by full scale flight test cf the laboratory
Agwagon. The test aircraft is shown in Figure 1, Wing tip configuration
nrdthe strut-wing fairing arrangement were varied to provide three combi-
nations which were tested in a range of flight' conditions to simulate
typical agchemical delivery conditions. “Afrcraft geometry was essentially
standard with only minor changes to accommodate special systems and instru-
m&ﬁiation for purposeé of this test sequence. The following values were
used, as required, in the data reduction: -

S ® 202 square feet

ShE 0T feet
)/ €yt 5.33 feet

N

| Aspect Ratio = 8.2

f
Ce

e

{/ "“#x3.71 feet
The wing airfoil segéion used was a NACA 2412 from the wing root to eighteen
1Lches from the tip&awith a NACA 0009 from there to the tip. Wing incidence
was +1.5° at the roof&and -1.5° at the tip; however, there was zero twist
ih the constant chord\ﬁegment of the wing. Wing dihedral was 6°. A
T‘i;dyne-Continental 10-520-D fuel injection engine rated at 300 HP drove
an 86-inch constant speed 2-blade propeller. The-aircraft chemical hopper
wls'hsed to vary airplang gross weight by addition of approximately 1400 1bs

of water ballast. Two takeoff gross weights were flown--2600 1bs and 4000 1bs.

addibhe i




Jest Equipment and Instrumentation B
' The aircrait was equipped with self-aligning sensor probes mounted on

a rigid flight test boom (see Figure 2). The sensor probas were for
mtasuring static and tota) pressures, and they uer@ calibrated with a
trailing cone static source. The position error at the boom was considered é
nLg]igible for flight conditions out of ground effect and within the test
envelope. A spot calibration of the airplane pitot-static system was con-
doppler-radar speed unit. The radar unit had a built-in calibration that
provided accuracy within the resolution of the aircraft airspeed indicator. -
Position error in the test pitot-static system within grouﬁd effect was algq_
considered negligible over the speed range of testing. | e
" Wing span-wise pressure distribution was measured for several configu- - -
r#tjons. Brass tubing, .035 inch i.d., was installed internally and mounted
flush and normal to the wing surface at 11 span-wise stations along the
quarter-chord line: Pressurg lines wére routed from the surface taps to a
scannivalve, and pressure transducer which was used to measure the pressure
values. Each pressure tap was manifolded to four positions on the scanni-

valve such that local pressures wereaéhmpled every 2.5 seconds op the scanni-
Lo

:jiVe cycle period of 10 seconds. The transducer output was recorded on

_lgnetic tape with a Lockheed Electronics Model 417, 7-track recorder.

Recorded values were digitizedfaHHNAVérages calculated as part of the auto-

matic data reduction process.

 The test aircraft was equipped with a dust system which ejected con-

: t%ql]ed amounts of dust from the wing tips for use in the vortex visualiza-

tion tests. The dust Sysiemzééﬂgistéd‘of a high-pressure nitrogen bottle

which supplied ejectfon pressure through a pressure regulator and a dust
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reservoir, a 2100-cubic inch, low-pressure, aircraft oxygen bottle. -The
dust was then routed through a 0.5-inch pressure line to a hand-oper#ted
controi-yg}ve takeﬁw;}om;nzdry-dhemical fire extinguisher which was mounted
in-the céckpit. After passing fﬁféugh the valve, the dust was routed to the
wing tips through a Y-fitting and a 0.75-inch steel tubing mounted inside
the wings. The outlet in each wing tip-fairing which is shown in Figure 3
was formed by extending the tubing about one inch out of the Tower surface -

of the fairing. Several arrangements of exit position and nozzle geometry

wefe tried, but no significant change in the dust pattern was noted. The
{

best vortex‘vjsuﬁliiétion was obtained with a nitrogen pressure of 1500 psig

at the regulator and approximétély'ﬁbo psig in the dust reservoir. Ten to

| fifteen test runs were obtained with this procedure using an S-type bottle

in{tially pressurized to 2200 psig, before the nitrogen bottle was depleted.

The dust was pink in color and was idengified'6§”3‘“di[vehtfbleﬁd“wdsed as

a #il1er in certain cheémicals used in aerial application work. diher types
of dust were not investigated as the dust that was used was available and
providedwgifisfactory results. Three aircraft configurations were investi-
gated in which the wing;st;bi fairing and wing-tip were modified. Two types
of(wing-strut fairings were invesﬁiggféd. Each type was molded fiberglass
and provided by Cessna Aircraft. The first type (Type I), shown in Figure
4, was an early design and is no longér in prodﬁéfi@ﬁ,‘ Type II, Figure 5,
incorporates a full chord wing fence and is the Cu}rentfbroductidamfairihg&
Typefl Qipg-tip, Figure 6, is the standard Cessna Ag-series aircraft

configuration, and Type I1, Figure 7, is the optional Cessna-type drooped

tip.: TiBie\T-identifies each of the combinations evaluated during these

flight tests.

N T T T T
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Table 1
Agwagon Wing Tip and Strut Fairing Configurations

N Configuration v | o2 | s8]
| Wing Tips e Il
2 Strut Fairing ‘i;U%HHHMJM 11

"Thesq configuration numbers will be used subsequently to identify tip-

fair%ng arrangements in connection with the discussion of results.

L 7 Span-wise Pressure Distribution

)

)

! | Igst Methods and Data
s ,

|

b

, The strength of the rolled-up trailing vortex is determined not only

} by tﬁé“gbefficient of 1ift but also by the span loading of the aircraft (4).
E For éxaﬁp]e, on conyentional aircraft, the span loading is a maximum at the'\
| wingiroot and decreéses to zero at the tip. Since the strength of the -
trailing vortex is approximately equal to the circulation at the wing

root, éﬁe vortex strength is higher than if the wing were uniformly loaded.
" The spanwise pressure distribution of the Agwagon was determined for

i '
various flight conditions and weights. A matrix of the test conditions

A

(TabletE5L1ists values of test variables--airspeed, flap settiné;igross
‘weight, g;Eund effect, and aircraft cunfiguration.

| A1l of the airspeed, flap, gross weight, and aircraft configuration
poiﬁts,were flown out of ground effect. A serieé of test points in ground
effég;iyere flown with the aircraft in the standard configuration, but
f:‘ resu]téﬁshowed‘the span-wise,pressure;gi§§ribution was not affected by the

‘ i” | ground planém,‘fherefore, flights in ﬁ?ound effect were discontinued and

7
" i . P {”
) - i -
= \ ! G il
- K4
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Table 2
Flight Test Matrix--Full Scale

| Configuration . | Airspeed (mph) | Flaps | GNT Gr;una Effect
o Standard (1) | . 80 0° ‘| 26001bs |- Out X
| | Drooped Tips (2)| 100 20° | 4000 1bs
! Wing Cuffs |
. and  (3) 120
' Drooped Tips S
' A
all others were conducted at relatively high altitude.
{ § T»‘ To obtain the pressure distribution, the left wing was fitted with —
| eleven flush pressure taps along the quarter chord of the airfoil. A 'ng
| _- | pianView showing the location of these surface orifices is illustrated in
F{gure 8. The eleven taps and the free stream static pressure were connected ..
t? a 1/2 psi scannivalve box located in the baggage compartment of the Agwagon.
TQe“scannivalve cycled through these twelve pressures at 5 readings per ;

second and measured the pressure difference between the surface orifice and

tﬁe free stream total pressure. This AP was converted to an electrical sig-

F _ nil and stored on magnetic tape. The 5 Hz sampling continued for one minute
a£ each test point. After the flight the data on the magnetic tape was ’ 7
| pfocessed through an analog-to-digital converter and minicomputer and stored’ |
t . " o? a 9-track digital tape. Converted data was processed on a UNIVAC 1108 v

t@ calculate the average coefficient of pressure for each wing tap. The
; o aQerage airspeed over the one-minute run was also computed. The results
fsr‘each test point were plotted to obtain a span-wise pressure disf}ibution

for the wing. A schematic of this process is shown in Figure 9,
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The data was plotted as coefficients of pressure vs. span-wise distance
along the wing line of quarter chords in inches from the aircraft center-
line. The coefficient of pressbre was-defined as:

C = Ps = Pas

P q ‘
whére Pg is the local, measured static pressure, P . is the free stream
stitic pressure, and q is the free stream dynamic pressure. Since the
scannivalve measured the difference between local ‘static and free stream

Y
S

total pressure, it was possible to define cp as:

. | | | S e8P aP
- ¢, 3

where AP is the pressure difference across the scannivalve.

The results of the flight tests are shown in Figures 10-21. Three air-

§g§eds were plotted on each graph to show the effects of increasing dynamic

?ressure. A1l of the plots show a roughly elliptical 1ift distribution
with a deviation at the midpoint for the wings with the early type cuff

installed and an increase in 1ift near the tip for all the configurations

. ékéept at 4000 1bs. gross weight with standard wing tips. These variatiﬂﬁéﬂrw

will be discussed in detail later in the report.
i Full scale flow visualization was possible by means of an adaptation
éf the well-known wind tunnel vapor screen flow visualization method. The
experinental arrangement for this purpose is shown schematically in Figure 22
Theicamera was located slightly to the side of the measurement station
cén;erline which was the runway centerline. A Nikon 35mm single lens reflex
anera was used with a 135mm lens for photographing the vortex trajectories.
Black and white photos were obtained using Tri-X film pushed to an equiva-

lent ASA 1000, exposed at 1/8 second shutter speed and f2.8. Photo

sequences were taken at 1 second intervals for the first 10-12 seconds after

)
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Ahe vortices formed. Flights were conducted at night and the vortices
were made visible by illuminating entrained dust particles in the wing
wake by a 'light-plane' created by a pair of light boxes leated on either
Jide of the runway. The resul’ is i time varying section view of the wake
which produces a highly visible display of the tip vortices. Dimensional
reference poles, or grid poles, were placed on both sides of the runway.
Rgflective panels were attached to these poles and provided reference
pLints for a large measurement grid when illuminated by light sources. This
measurement grid was available on all photographic records and established
a network within which resulting vortex motion was referenced. A binary
c?;;k light panel was used to provide a time reference on the data photo-
graphs. Also, a recording wind station, shown in Figure 23, was located in
the area of the measurement plane to provide wind velocity data. Altitude
guidance to the pilot was provided by three poles erected beyond the light
S%rgen. Each pole had a single light mounted at the desired altitude,v_By
keeping the three lights aligned as he flew down the runway, the pilot wasfrr
able to maintain the desired altitude.

~An example of the vortex trajectories is shown in Figure 24. The reduced
data from the trajectories is shown in Figures 25 through 39. The data
represents the position of the vortices as if the airplane were approaching

k

the observer. The position of the left and right vortices are plotted as

noL-dimensional distances above the ground plane and lateral distances from

the aircraft longitudinal axis. Distances were non-dimensionalized with the
wing semispan. The time tick with each vortex point represented the down- |
stLeam distance from the generating aircraft in wing semispans. The wind

direction was referenced to the direction of flight of the aircraft.




III. ONE-EIGHTH SCALE MODEL FLIGHT TESTS

A one-eighth scale model was constructed for purposes of comparing
sﬂall scale and full scale tip vortex trajectory data. The model was
deLigned with the use of standard Cessna aircraft preliminary design

drawings which were the best available design information. Conventiona)l

model airplane construction methods and materials and off-the-shelf engine
and hardware were used to keep costs and development problems at low levels. !
The original intent was to fly the model as a 4-wire U-control model

utilizing essentially the same experimental methods as the full scale air-
plahe. A combination of model weight, stall speed, and controllability

made night flying impractical and this was abandoned as a useful experimental
method. Subsequently, the model was mounted to a large boom-strut arrangement
o% an automobile chassis, and the small scale data was obtained by driving

tﬁe car at desired speeds similar to the powered carriage used in the NASA

Langley Vortex Research Facility.

|
!

Test,EQUipment and Instrumentation

Three view and section geometry of the Agwagon were carefully scaled
to 1/8 and the model constructed to these dimensions in essentially exact
scale (Figure 40). The model was constructed of readily available model
maierials to provide sufficient strength and light weight for use in tests
at Mississippi State University and possible use in the NASA Langley Vortex
Te#t Facility. The fuselage construction was of built-up balsa stringers
and formers with heavy balsa plank skins. All joints were cemented and the
gnterior painted with a high-strength epoxy cement. The top of the fuselage

was removable for easy access. The interior of the fuselage with installed

engine is shown in Figure 41. This fuselage'désign includes provision for

A
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ﬁasy conversion to the Vortex Test Facility support system and test

to the fuselage and provide an adaptation to the facility sting support andz

ractices at that facility. There are machined aluminum blocks which bolt

+nternal 6-component force balance.iandvrepjgcement of the pjston‘engine; |
with a Tech Developmeht?Mdaeipé@SAwbn;dﬁétséwmﬂtor. These are shown in
Figure 42. -

] The wing construction utilized standard model airplane construction
&ethods but because of geometry complications it was made in several sec-

Tidns. The basic materials were high density styrofoam core and balsa or

064 inch plywood skin with hardwood leading and trailing edges. The styro-

foam core material was cut with a hdf wire and a template jig to provide
lood scale dimensional fidelity. This construction technique and a typical
iing section are shown in Figure 43. Wing flaps are hinged to provide
#oyﬂpr action in addition to deflection to 30°. The hinges were machined

4

frdm drawings which were produced by photographically reducing full scale

- drawings, to model scale. The flaps are ground adjustable and pinned to

provide 0° and 20° deflection. Figure 44 shows the flaps extended 20°,

Test Methods and Data

Flight speeds were computed for the model which would produce the same
1ift cﬁ&?ficient/askthe full scale Agwagon. The 1ift coefficient is defined
as: ' S

ZNhf W

- - m
CL -
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Scale flight speeds can be ca]culated which will produce identical lift
coefficients by solving for V". Thus:

. : R ¥
: LM 1/2
' N Vy, = 8V, ()
| 1 y ’ M A NA 0
) here the subscripts M and A indicate model and full scale airplane values,
respectively. A table of values can be computed for VM which corresponds
i to ;pg full scale airplane test conditions for a specified airplane weight
i and flight speed. Then, for a model weight NM = 10 1bs, and airplane gross:
| | weight NA = 4000 1bs, the following tabulated values for VM and CL corres-
| | pond to each of the full scale flight speeds.
f | o Table 3
| "/ Equivalent Scale Model Test Speeds
|
, .
80 1.21 30.

100 0.77 | 31.5

| 120 0.54 o4

 , It was not practical to fly the model at night as a 4-wire control line |
model as designed because of very poor handling qualities at low speeds
wh#ch'caused extremely difficult contfol problems. Further, the model stall
speed was relatively high at VMS = 28 mph due in part to a relatively high
wi?g*loading of 3.14 LB/FT2 and it was nct possible to maintain the lower
scale test speeds. Therefore, the model flight test program was abandoned

and an alternative test method was developed which would permit testing at

e
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conditions nearly the same as those listed in Table 3.

The model was supported on a 4 ft vertical strut which was attached to

a 20 ft tubular-steel truss boom which extended horizontally from the front

of the ground test vehicle. This arrangement is shown in Figure 45. The
shpport st~ut included a mechanism for manually changing the model pitch

|

ﬁngle. The boom strut combination was such that the model wing tip was
approximately 10 ft above the ground and nearly 20 ft in front of the ground
test vehicle chassis. The test vehicle is a 1956 Buick chassis, engine, and
4;;9e-train which provides the propulsive power necessary to sustain the

desired test speeds. This test vehicle is capable of stable test speeds up

to.76 mph. The apparatus necessary to eject chalk dust in controlled amounts -

at ihe wing tips, similar to the full scale system, was mounted on the chas-
sis close to the driver's position for easy control. This included a S-
size bottle of dry nitrogen, chalk dust reservoir, plumbing, and the control
valve. A1l of the major components were removed from the Agwagon for use
in this series of tests. Dust was routed through the model f0§91399v39d,
ducts interior to the wings and ejected“f;ominozzlés né&r‘eééhjwihé;ti;;bn 2
‘the lower surface of the wing.

nwahe‘ground equipment for the mo&el tests is shown in Figure 46. The
eq&ipment confiéuration was similar to the full scale system, but some
changes were necessary to account for scale effect. Only one 1ight box
was heeded to adequately illuminate both vortices since they were initially
close together and dissipated relatively quickly. The binary coded digital

clock was modified to run in 0.1 second intervals, and a motion picture

camera running at 8 frames/second was used to photograph the vortices. Also,

-
“the dimensional grid poles were marked in the 12-inch increments to provide

better resolution in tracking the vdrtices.

13
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.. It was essentially impossible to test under "no wind" conditions.
Nibds of 3 ft/sec were found to have a significant effect on the trajectories

of the tip vortices and natural conditions are never completely still where

variations in surface thermal conditions exist. Small differences in the

cooling rate of varying surface types result in light and variable thermally

iAduced convection which is apparent as a very light wind. A1l model tests

were conducted at late night when the conditions were "apparently calm."

rwever. it is obvious from observations of the data that significant wind

i
did exist for most of the tests. The wind velocity in each case was less

than the minimum wind speed which could be measured with available equipment.

Thus, no wind corrections are possible for the model data.
- Table 4 is a listing of the model test conditions. The mode) configuration

[ |
was identical to full scale configuration 1, Tisted in Table 1. No attempt

was made to fabricate and install drooped tips or wing cuffs as was done

on the full scale aircraft.

Table 4 L
Flight Test Matrix--1/8 Scale” =
vy 1@ | c{ | Flaps
1 ‘ -
| 12° | 121 0°
37.5 |, 8 | 0.77 20°
45 | 4° | 0.5

| The 1ift coefficients which are listed are only approximate since there
is some uncertainty in the calculation of wing angle of attack and the slepe

of the lift curve, CLa. The pitch angle, 8, was measured from the fuselage

14
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reference line. Each of the three speeds listed in the table was "flown"
for each of the pitch angles, i.e., 4°, 8°, and 12°. This provided.a good
range of 1ift conditions whichbracketed the full scale fligﬁt féEts‘;;ducan
be easily duplicated in the Vortex Test Facility. S
The model developed well-defined tip vortices which were readily
discernible using the test apparatus as described. A sequence of .photo-
Jréphs showing a typical time.hi§gory of the model vortices is provided in

Figure 47. The trajectories datﬁ are shown in Figures 48 through €5 plotted

in the same way as the full scale data. The horizontal axis is the distance
fyom the aircraft centerline in wing semispans and the vertical axis is the
height above ground in semispans. Time ticks on the trajectories indicate

the location of paired vortices downstream from the aircraft in semispans.

Discussion of Results

Ingluence on Ground Effect | 3,J

The effect of the ground plane on aircraft drag is well known. As
an aircraft approaches the ground, the induced drag is decreased due
to a reduction in the downwashkdk the wing. The reduction in downwash
is due to the interference of thne ground plane with the flow field induced
bJ the trailing vortex sheet. It seemed, initially, that since the downwash
was Qignificantly changing, the 1ift distribution along the wing might
also be altered and this could be demonstrated. However, for an airplane -
inhfﬁge‘flight the span-wise pressure distribution is not changed by ground
effeét sufficiently to measure with standard instrumentation.

Consider a finite wing in straight and level flight out of ground
effect (Figure 66). Because of the downwash velocity, w, the free strean
ve{déity, V_, is changed so that the wing seeé'not‘d;rbutvvymehus the

1ift vector L is inclined rearward by an amount equal to the induced angle

15
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of attack a,. Since the wing must support the afrcraft weight, W, with
the vertical component of the 1ift, the aircraft is fl&wn at some angle of
atiack. a, so that level flight can be maintained. Typical values of these
nutbers for the Agwagon will illustrate how the 14t vector changes as the
aircraft goes in and out of ground effect. Assume the aircraft weighs_ |
4060 1bs, has an elliptical 1ift distribution along the wing, and is flying
at 80 mph at standard sea-level conditions. These represent a worst-case
condition for induced drag (low velocity, high weight), The aircraft co-
efficient of 1ift for this condition ii"CL = 1,21. The induced angle of
attack at the aircraft centerline can be calculated (3) as:

Oy = - 5%;IV ‘

thce the veﬁtical component of 1ift is 4000 1bs, the magnitude of the 1ift

vector is: }

_ 4000 . e
L-m 4004.4 1bs

and the induced drag is: .
Di = L sin a; = 187.7 1bs

Consider the ideal case in ground effect where the downwash goes to
zFro. Then irduced drag is zero and the 1ift vector, L, is equal to the
weight, W. Since W = 4000 1bs, the Vift vector is 4000 1bs. Note that this

is only 4.4 1bs of 1ift less than the worst case for out-of-ground effect.

, Thus,»the wing pressure distribution has only changed approximately 1/10 of

16




1%. This change was too small to see on the instrumentation. The major
1nfluén§é,gf,ground plane proximity is to rotate the 1ift vector forward by _
an amount equal to‘the;jnducedﬁangle of attack, ays and the pressure distri-

bution 3ﬁahge§mare negligible.
t e 1S

Influence of Strwut Fairing

Plots of the experimental pressure distributions for configurations 1
asyre d

and 2 show a large drop in the mnghftude of C_ at the point where the wing

strut is faired into the wing. This correspost to a significant decrease
in;iift and would result in a larger angle of attack required to maintain
level flight and thus would result in a stronger trailing vortex. The strut
fairing was tufted (Figure 67) to observe the airflow around the strut at
various flight conditions in an effort to determine the characteristics of
the flow. It was found that on theffairing and fanning out behind the fair-
{ng there was a region of very turbulent flow. Outside this area the flow
was attached and welﬁfbghaved. As the aircraft approached stall, the region“";"
behind the strut sepakatéd fully well before the rest of the wing. 0bviously.

the fairing was not smoothing the airflow around the strut-wing junction

effgctively. Configuration 3 had a large wing cuff and fence combination

installed which improved the 1ift distribution significantly. These wing

Quffs are now standard equipment on all Cessna Agwagons. They were developed |

to improve the stall characteristics of the Agwagon, but they also smooth

the 1ift distribution and ultimately reduce the strength of the trailing
wing-tip vortex.

|
Ingluence of TLip Configurations

The span-wise pressure distrijution near the tip varied depending upon _NA

the aircraft configuration and weight. The pressure distribution generated

17
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by the standard wing tip configuration with a 4000 1b gross ueight,decreaseo
smoothly and to zero at the tip. This”is a typical pressu?e distribution 7
and is nearly elliptical ,however. at 1ight weights (2600.1bs), the -
pressure at the two points furtheséﬁouthoard (Figures 10-11) were nearly
equal at 80 mph, and at higher flight speeds the pressure coefficient at thevrv
Jip was higher than the one inboard. Since the airfoil section changes from
NACA 2412 toeﬂACA 0009 between these two points, it was initially thought
that this might be the cause of the rise in 1ift near the tip. However, an
e&anination of the twist distribution and the 1ift curve slopesﬂshowed that
the 1ift should be decreasina;instead of increasing. The same phenomena was
shggn more clearly when the drooped tips were added. At all flight test
points, the lift distribution goes down, up, and back down at the tip. mThe
decrease in 1ift inboard of the tip was even more pronounced with the large
wing cuffs installed In each configuration, an increase in the gross weight
produced-a corresponding increase in the deviation in the C_ curve.

p
Unfortunately, there is no clear explanation for this behavior. however,.

tlere are three possibie reasons why the 1ift could decrease near the tip.
These are decreased dynamic pressure. decreased angle of attack, and instru-
méntcerror. A decreased local dynamic pressure would normally be a550ciated
wifh»a flow separation forward of the measurement point. Therefore, the
wing tip area was!tufted and flight tested at the different airspeeds and
flap settingsTTeThere was no evidence of turbulence or separation along the |
tip section. Thus decreased dynamic pressure is probably not a factor.

|“The second possible reason is an effective decrease in local angle of
attack at the section involved. Examination of the geometric and aero-
dynamic twist of the wing, however, shows that this is unlikely. There is

increased aerodynamic washout when the section changes from 2412 to 0009 and




the last 18 inches of the tip has a significant (1;5;) ;eometric washout in
addition to the section change. This would cause a decrease in 1ift along
the tip section. Further, there is no evidence of any §t?669}10ca1 downwash
that would alter the angle of attack of the section. inboard of the tip.
Instrumentation error or problems related to instrumentation were con-
sidered the most probable source of the apparent deviation and thuc were
examined closely. A decrease in the 1ift (i.e., higher pressure than
expected) iswy§uaily‘caused by a leak in the plumbing from the static port
to the scannivaive. All of the tubes were vacuum checked after installation
by an aircraft static pressure tester and were.fdubd:to be égqures‘ After
the flight tests showed the anamoly near the tip,wthelpyessuré‘taps were
rechecked and still showed no ]eaks. It was possible that if there were a
leak ‘present, it inay have been fixed while the tubes were being checked to
insure proper connections. Therefore, the flight{igst sequence mﬁih a gross
weight of 2600 1bs in the standardrcéhfigurétion was repeated to check the
span-wise pressure digikibution of”the wing. As before, the pressure dis-
tribupion at the tip showed thexsémgicharacteristic rise. Appé?én;]y, a |
line leak was not the cause, Séaﬁﬁ?Qq]yé errors were eliminated as a
possible causé‘by switching leads such that the pressure sensed at station 9
was measured on a different set of four scannivalve positions and no change
16 indicated pressure was noted. Another argument against the possibility
of Q'Teak wgsgtheaeonSjstent Béﬁgxﬁor.» Experience with the static pressure |
system has shﬁwn ;ﬁat in the presence of a system Teak the static pressure
as seen by the scéﬁnivalve was relatively insensitive to dynamicybhéﬁgg§.
However, in this case, the static pressure near the tip varied in probdrtion

to the rest of the wing, depehding upon the flight configuration and dynamic
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pressure. The consistency of the measured pressure seemed to say "no leak."
Thus, the tip region pressure distribution as measured seems to be

valid, but no acceptable physical explanation for the unusual distribution

has been:developed. y : ‘

Wind Effects on Vontex Trajectonies
The initial flight tests were conducted at wing tip heights of 5, 10,

and 20 feet above the ground for the purpose of observing the behavior of

the wing tip vortices in ground effect. A special effort was made to fly
only during zero wind conditions since no method was available to correct

the tip vortex trajectory data for wind effects. It was found, however, that
even‘light winds of 1 mph qr;less had large effects on the motion of the -
vortices. Light and variable winds caused by local variations in surface
cooling rates and the cthective motion of the air induced by these tem-

perature gradients caused significant variations in the trajectory maps.

Qoo
/A

The available wind velocity instrumentation system simply was not sufficiently

sensitive to measure wind speed and direction within the sensitivity range

: requirgd by the nature of the experiment. This very sensit1ve behavior of

he tip vort1ces to wind effects was not anticipated.

['\
S An 1nv1sc1d aralytical model consisting of two vortices descending in

{
ground effect was used to investigate the sensitivity of the trajectories

to a crosswind (Figure 68). The vortices descend until they approach the

ground plane, then level off and sebarate depending upon the velocity of the >€

cro;swind. In a no wind condition (V_ = 0), the trajectories describe a
hyperbola. As the vortices separate and approach a level altitude above

the ground, it can be shown (4) thét‘thg horizontal velocity approaches a

value of:

20

s s et



TTT— . —

where y is the horizontal velocity, V, is the velocity of the crosswind, r
is the magnitude of the strength of the vortex, and z is the altitude of the
vortex above the ground plane. The value of I' for an arbitrary planform
can be estimated by the procedures in reference 5. For the special case 6f

an elliptic lift distribution, the strehgtﬁ of the trailing vortex is:

A
I = v

mpVb

whére L is the Vift of the aircraft, p is the mass density of the air, V is
the free stream velocity of the aircraft, and b is the wingspan. For the
flight conditions of the Agwagon, assuming no crosswind and an average height
ofiid feet for the vortices, the velocities of the wing tip vortices were
found to be as listed in Table 5. o
‘Table 5
Lateral Velocity of Tip Vortices in Ground Effect

Gross WT V (mph) r (ft¥/sec) y (ft/sec)
2600 ~ 80 294.6 2.36
100 237.3 1.89
120 199.7 1.57
4000 80 456.3 3.63
100 365.1 2.91

120 _.304.2 2.42

Since y represents the maximum horizontal velocity in the no-wind case, it
is apparent that any wind at all will substantially change the vortex tra- '

jectory. For example a crosswind of 1 ft/sec would change the velocity of

ot}
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the strongest vortex (80 mph, 4000 1bs) by 28%. Note that this is for the
#ase where the vortex has leveled off. As the vortex descends vertically,

% the wind_would have a much greaterreffect on its horizontél compdnent of

| velocity.
} i An analytical model which would account for the viscous interaction
5 #f the vortex and surface boundary layer could possibly be used to correct .

the observed vortex trajectories for wind effects so that "zero-wind" data
| could be calculated. This is a difficult calculation and impractical for |
| the purposes of this study. Thus, it was decided to conduct all of the

data flights at 20 ft to minimize ground effects and allow a simpler cal-

culation of wind effects. The tip vortices were tracked for the first

0-15 seconds and it was expected that the wind velocity integrated over

|
|
J
P
l \
| the test time would allow a simple wind correction. However, this method
E was unsatisfactory. The anemometer system had a start threshold of 1.1 1
ft/sec which is well above a "significant" wind, and wind variations in E »
4irectiun and speed which occurred during the 10-15 sec test period were :nj
not measurable. Thus, it was not possible to correct trajectory data for
the effects of crosswind. Here, crosswind is taken to mean the lateral
combbnent of the wind velocity vector.

: A similar and equally difficult problem was caused by the influence

B

of the headwind or tailwind component of the prevailing wind. Since the
éﬁbérimental method consisted of photographing time sequences of the airplane i
wake cross-section and relating the tip vortex location to the generating
aircraft flight speed, a wind component along the flight path will produce

an apparent change in the observed vortex trajectory. No satisfactory

method was developed to correct for this wind effect either.

- : The influence of the wind on the behavior of the tip vortices is very
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significant and unpredictable for even very light winds (less than 1 ft/sec).

C&nsequently. the drift of agro-chemicals entrained in the tip vortices is
also affected in a very sngnificant way and would be apparent on irregular

surface distribution of the chemicals.

gjjectb of Flaps on Wing-Tip Vontices

The wing-tip vortices are affected in two ways by deployment of wing
flaps. The strength of the tip vortex is altered (decreased) and the tip
vortex trajectory is changed due to the influence of the shed trailing
Jortex of the flap. The effective angle of attack of the flapped section of
a wing is increased as the flaps are extended and the wing section 1ift is
correspondingly increased. To maintain level flight, the overall 1ift of the
wing nmust be maintained constant at its original value. This is done by
dedreasing the pitch angle of the airplane at a given airspeed until equilib-
rium is achieved. The lower pitch angle of the airplane results in a lower

angle of attack for the unflapped outboard section of the wing, thus decreas-

1ng the strength of the wing-tip vortex while 1ncreds1ng the strength of the '

flap vortex.

The wing flaps, however, now generate their own vortex system. Each
flap segment has two trailing vortices associated with it, Qné on the in-
bog;& side and one on the outboard side (Figure 69). The oﬁtboard vortex
hﬂs a significant effect on the wing-tip trailing vortex. As the trailing
vortices are shed, the tip vortex and outboard flap vortex will move

llterally outward due to the influence of the ground plane. The inboard

flap vortex moves inward and is destroyed by the propeller wake and/or the

, ogposite inboard trailing flap vortex. However, the outboard flap vortex

and tip vortex will also mutually influence each other as seen in Figure 69.

The mutual interference which occurs between the flap-induced vortex and

23

e e ik ki et kil eei g




P -

5

\\\
theuwing-tip vorbex is such that initially the flap vortex moves rapidly
outward and beneath the tlp vortex forc1ng the tip vortex upward. As the
flap vortex moves outboard of the wing -tip vortex, the induced velocities
cause the wing-tip vgntex to move downward and the flap vortex upward in a
generally circular motton. In this manner, they rotg;e about one another
in a windup until they %inal]y merge in a single trajjinngortex. This is
shown in the sequence of bhotographs in Figure 70. Ainbiane gross weight
waL 4000 1bs for thws test\po1nt airspeed was 100 mph, and the wing flaps
were poszt1oned at 20° The w1ng t1p height was 23 ft above the runway.

At time t = 0 the Agwagon had\Q:zi\iaesed throuqh the llght plane. Thgﬂ_r,

white dust marks-the tip vorticesN_At .t = 2 seconds,~the cove of the tip

vortex is visible in.each 'ust cloud, but now the flap vortex is also out-

llned as it hoves. beneath the t1p vortex and beg1ns tq entraIn chalk dust

At t = seconds, the r1qht flap vartex is now clearly vlslble It is
moving up and to the left, while the w1ng tip vortex is moving down and to
the r%@ht!starting the windup motien. In the photo labeled t = 7 seconds,
the vowte§ system for the'right wing 1ewbotating about one another as they
begin to menge%intoione trailing vortengb The left wing vortex system is
also doing this, but is nbt shown as clearly as thewn%ght one. At t=29
seconds, thereeie‘one wel{;&efined vortex tra{]ing thekrignt”ninG”with a
vague outline of a weak vortex abOVe f£}5 By t =17 seconds, the vortex

roll-up is complete and there is only one trailing vortex.

24
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V. CONCLUDING REMAR!S

A
i

Tﬁéfsensitivity of the tip vortices to dfift in light winds was
dembnstrated’by both theoretical analysis and flight test data. From a
practical standpoint this is important to the aerial applicator, since
éven on a supposedly calm day there could be significant vortex drift.
Because the vortices can contain a high concentration of the chemicals
b@ing sprayed, this drifting may result in uneven application on the —
desired field or unintentional drift to a neighboring field. It also
means that future flight testing on the interaction ofdpip vortices and
agri-chemicals must have provisions for accurate measurement of Tocal air
currents. o

No direct correlation of full scale and 1/8 scale data was done.
However, certain qualitative observations were possible for the vortex
blhavior. The tip vortices formed syumetrically above the wing and slightly
inboard of the wing tip. As they descended out of ground effect, they
tended to drift toward the aircraft centerline. This may be due to the
prdpeller/fuse]age wake. At approximately 0.75 semispans, the separation

distance started to increase as the vortices entered ground effect. They

then moved laterally apart and often rose agaiﬁ”to a higher altitude.

The duration of the vortices ranged from a few seconds to over a minute,
depéﬁdﬁng upon the aircraft configuration and atmospheric conditions.
At the completion of the tests the model was sent to the NASA Vortex
Tésp Facility at Langley, Virginia. By duplicating the model flight test
condigions, it should be possibie to determine the extent of wall effect

i+ the Facility tunnel. And with a careful analysis of the full scale

~data with the model test data, it may be possible to determine the scale

effects on the model data.
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Figure 1. Cessna A188 Agwagon
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Figure 4. Type I Wing Strut Fairing

Figure 5. Type I1 Wing, Strut Fairing
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Fiqure 7. Type II Wing Tip
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Figure 44, Model Wing with Flans Extended
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Figure 64.

Tip Vortex Trajectory--1/8 Scale
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Figure 65.
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Figure 70. Photo Sequence of Flap Vortex System
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Figure 70.

t = 7 secC.
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