117 research outputs found

    Template-dependent multiple displacement amplification for profiling human circulating RNA

    Get PDF
    Multiple displacement amplification (MDA) is widely used in whole-genome/transcriptome amplification. However, template-independent amplification (TIA) in MDA is a commonly observed phenomenon, particularly when using high concentrations of random hexamer primers and extended incubation times. Here, we demonstrate that the use of random pentamer primers with 5´ ends blocked by a C18 spacer results in MDA solely in a template-dependent manner, a technique we have named tdMDA. Together with an optimized procedure for the removal of residual genomic DNA during RNA extraction, tdMDA was used to profile circulating RNA from 0.2 mL of patient sera. In comparison to regular MDA, tdMDA demonstrated a lack of quantifiable DNA amplification in the negative control, a remarkable reduction of unmapped reads from Illumina sequencing (7 ± 10.9% versus 58.6 ± 39%, P = 0.006), and increased mapping rates of the serum transcriptome (26.9 ± 7.9% versus 5.8 ± 8.2%, P = 3.8 × 10-4). Transcriptome profiles could be used to separate patients with chronic hepatitis C virus (HCV) infection from those with HCV-associated hepatocellular carcinoma (HCC). We conclude that tdMDA should facilitate RNA-based liquid biopsy, as well as other genome studies with biological specimens having ultralow amounts of genetic material. </jats:p

    Genome-Wide Identification of Allele-Specific Expression (ASE) in Response to Marek’s Disease Virus Infection Using Next Generation Sequencing.

    Get PDF
    Background Marek’s disease (MD), a T cell lymphoma induced by the highly oncogenic α-herpesvirus Marek’s disease virus (MDV), is the main chronic infectious disease concern threatening the poultry industry. Enhancing genetic resistance to MD in commercial poultry is an attractive method to augment MD vaccines, which is currently the control method of choice. In order to optimally implement this control strategy through marker-assisted selection (MAS) and to gain biological information, it is necessary to identify specific genes that influence MD incidence. Methods A genome-wide screen for allele-specific expression (ASE) in response to MDV infection was conducted. The highly inbred ADOL chicken lines 6 (MD resistant) and 7 (MD susceptible) were inter-mated in reciprocal crosses and half of the progeny challenged with MDV. Splenic RNA pools at a single time after infection for each treatment group point were generated, sequenced using a next generation sequencer, then analyzed for allele-specific expression (ASE). To validate and extend the results, Illumina GoldenGate assays for selected cSNPs were developed and used on all RNA samples from all 6 time points following MDV challenge. Results RNA sequencing resulted in 11-13+ million mappable reads per treatment group, 1.7+ Gb total sequence, and 22,655 high-confidence cSNPs. Analysis of these cSNPs revealed that 5360 cSNPs in 3773 genes exhibited statistically significant allelic imbalance. Of the 1536 GoldenGate assays, 1465 were successfully scored with all but 19 exhibiting evidence for allelic imbalance. Conclusions ASE is an efficient method to identify potentially all or most of the genes influencing this complex trait. The identified cSNPs can be further evaluated in resource populations to determine their allelic direction and size of effect on genetic resistance to MD as well as being directly implemented in genomic selection programs. The described method, although demonstrated in inbred chicken lines, is applicable to all traits in any diploid species, and should prove to be a simple method to identify the majority of genes controlling any complex trait

    Serum from humans on long ‐ term calorie restriction enhances stress resistance in cell culture

    Get PDF
    Calorie restriction (CR) without malnutrition is the most robust intervention to slow aging and extend healthy lifespan in experimental model organisms. Several metabolic and molecular adaptations have been hypothesized to play a role in mediating the anti-aging effects of CR, including enhanced stress resistance, reduced oxidative stress and several neuroendocrine modifications. However, little is known about the independent effect of circulating factors in modulating key molecular pathways. In this study, we used sera collected from individuals practicing long-term CR and from age- and sex-matched individuals on a typical US diet to culture human primary fibroblasts and assess the effects on gene expression and stress resistance. We show that treatment of cultured cells with CR sera caused increased expression of stress-response genes and enhanced tolerance to oxidants. Cells cultured in serum from CR individuals showed a 30% increase in resistance to H(2)O(2) damage. Consistently, SOD2 and GPX1 mRNA, two key endogenous antioxidant enzymes, were increased by 2 and 2.5 folds respectively in cells cultured with CR sera. These cellular and molecular adaptations mirror some of the key effects of CR in animals, and further suggest that circulating factors contribute to the CR-mediated protection against oxidative stress and stress-response in humans as well

    Genome-Wide Identification and Quantification of cis- and trans-Regulated Genes Responding to Marek’s Disease Virus Infection via Analysis of Allele-Specific Expression

    Get PDF
    Marek’s disease (MD) is a commercially important neoplastic disease of chickens caused by Marek’s disease virus (MDV), a naturally occurring oncogenic alphaherpesvirus. Selecting for increased genetic resistance to MD is a control strategy that can augment vaccinal control measures. To identify high-confidence candidate MD resistance genes, we conducted a genome-wide screen for allele-specific expression (ASE) amongst F1 progeny of two inbred chicken lines that differ substantially in MD resistance. High throughput sequencing was initially used to profile transcriptomes from pools of uninfected and infected individuals at 4 days post-infection to identify any genes showing ASE in response to MDV infection. RNA sequencing identified 22,655 single nucleotide polymorphisms (SNPs) of which 5,360 in 3,773 genes exhibited significant allelic imbalance. Illumina GoldenGate assays were subsequently used to quantify regulatory variation controlled at the gene (cis) and elsewhere in the genome (trans) by examining differences in expression between F1 individuals and artificial F1 RNA pools over six time periods in 1,536 of the most significant SNPs identified by RNA sequencing. Allelic imbalance as a result of cis-regulatory changes was confirmed in 861 of the 1,233 GoldenGate assays successfully examined. Furthermore we have identified seven genes that display trans-regulation only in infected animals and ∼500 SNP that show a complex interaction between cis- and trans-regulatory changes. Our results indicate ASE analyses are a powerful approach to identify regulatory variation responsible for differences in transcript abundance in genes underlying complex traits. And the genes with SNPs exhibiting ASE provide a strong foundation to further investigate the causative polymorphisms and genetic mechanisms for MD resistance. Finally, the methods used here for identifying specific genes and SNPs have practical implications for applying marker-assisted selection to complex traits that are difficult to measure in agricultural species, when expression differences are expected to control a portion of the phenotypic variance

    Global expression analysis of the yeast Lachancea (saccharomyces) kluyveri reveals new URC genes involved in pyrimidine catabolism

    Get PDF
    Pyrimidines are important nucleic acid precursors which are constantly synthesized, degraded, and rebuilt in the cell. Four degradation pathways, two of which are found in eukaryotes, have been described. One of them, the URC pathway, has been initially discovered in our laboratory in the yeast Lachancea kluyveri. Here, we present the global changes in gene expression in L. kluyveri in response to different nitrogen sources, including uracil, uridine, dihydrouracil, and ammonia. The expression pattern of the known URC genes, URC1-6, helped to identify nine putative novel URC genes with a similar expression pattern. The microarray analysis provided evidence that both the URC and PYD genes are under nitrogen catabolite repression in L. kluyveri and are induced by uracil or dihydrouracil, respectively. We determined the function of URC8, which was found to catalyze the reduction of malonate semialdehyde to 3-hydroxypropionate, the final degradation product of the pathway. The other eight genes studied were all putative permeases. Our analysis of double deletion strains showed that the L. kluyveri Fui1p protein transported uridine, just like its homolog in Saccharomyces cerevisiae, but we demonstrated that is was not the only uridine transporter in L. kluyveri. We also showed that the L. kluyveri homologs of DUR3 and FUR4 do not have the same function that they have in S. cerevisiae, where they transport urea and uracil, respectively. In L. kluyveri, both of these deletion strains grew normally on uracil and urea

    Effects of Doxycycline on gene expression in Wolbachia and Brugia malayi adult female worms in vivo

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Most filarial nematodes contain <it>Wolbachia </it>symbionts. The purpose of this study was to examine the effects of doxycycline on gene expression in <it>Wolbachia </it>and adult female <it>Brugia malayi</it>.</p> <p>Methods</p> <p><it>Brugia malayi </it>infected gerbils were treated with doxycycline for 6-weeks. This treatment largely cleared <it>Wolbachia </it>and arrested worm reproduction. RNA recovered from treated and control female worms was labeled by random priming and hybridized to the Version 2- filarial microarray to obtain expression profiles.</p> <p>Results and discussion</p> <p>Results showed significant changes in expression for 200 <it>Wolbachia </it>(29% of <it>Wolbachia </it>genes with expression signals in untreated worms) and 546 <it>B. malayi </it>array elements after treatment. These elements correspond to known genes and also to novel genes with unknown biological functions. Most differentially expressed <it>Wolbachia </it>genes were down-regulated after treatment (98.5%). In contrast, doxycycline had a mixed effect on <it>B. malayi </it>gene expression with many more genes being significantly up-regulated after treatment (85% of differentially expressed genes). Genes and processes involved in reproduction (gender-regulated genes, collagen, amino acid metabolism, ribosomal processes, and cytoskeleton) were down-regulated after doxycycline while up-regulated genes and pathways suggest adaptations for survival in response to stress (energy metabolism, electron transport, anti-oxidants, nutrient transport, bacterial signaling pathways, and immune evasion).</p> <p>Conclusions</p> <p>Doxycycline reduced <it>Wolbachia </it>and significantly decreased bacterial gene expression. <it>Wolbachia </it>ribosomes are believed to be the primary biological target for doxycycline in filarial worms. <it>B. malayi </it>genes essential for reproduction, growth and development were also down-regulated; these changes are consistent with doxycycline effects on embryo development and reproduction. On the other hand, many <it>B. malayi </it>genes involved in energy production, electron-transport, metabolism, anti-oxidants, and others with unknown functions had increased expression signals after doxycycline treatment. These results suggest that female worms are able to compensate in part for the loss of <it>Wolbachia </it>so that they can survive, albeit without reproductive capacity. This study of doxycycline induced changes in gene expression has provided new clues regarding the symbiotic relationship between <it>Wolbachia </it>and <it>B. malayi</it>.</p

    Sensation Seeking and Impulsivity: Combined Associations with Risky Sexual Behavior in a Large Sample of Young Adults

    Get PDF
    Although prior studies have shown that sensation seeking and impulsive decision-making are related to sexual risk-taking, it is still unclear whether these personality traits operate independently or synergistically. The purpose of this study was to elucidate the joint contribution of these personality traits to HIV and sexually transmitted disease (STD) risk behaviors using data from a large sample of sexually active young adults (N = 2,386). Regression modeling indicated that both sensation seeking and impulsive decision-making were consistently associated with sexual risk behaviors across 11 risk-related outcomes. Results further indicated that sensation seeking and impulsive decision-making operated synergistically with respect to the outcome variables of sex acts using drugs, acts with a partner using alcohol, and acts with a partner using drugs. In contrast to this, sensation seeking and impulsive decision-making operated independently with respect to the other sexual risk outcomes. Theoretical implications, as well as implications for HIV/STD prevention among high sensation seekers and impulsive decision-makers, are discussed

    Notch-Deficient Skin Induces a Lethal Systemic B-Lymphoproliferative Disorder by Secreting TSLP, a Sentinel for Epidermal Integrity

    Get PDF
    Epidermal keratinocytes form a highly organized stratified epithelium and sustain a competent barrier function together with dermal and hematopoietic cells. The Notch signaling pathway is a critical regulator of epidermal integrity. Here, we show that keratinocyte-specific deletion of total Notch signaling triggered a severe systemic B-lymphoproliferative disorder, causing death. RBP-j is the DNA binding partner of Notch, but both RBP-j–dependent and independent Notch signaling were necessary for proper epidermal differentiation and lipid deposition. Loss of both pathways caused a persistent defect in skin differentiation/barrier formation. In response, high levels of thymic stromal lymphopoietin (TSLP) were released into systemic circulation by Notch-deficient keratinocytes that failed to differentiate, starting in utero. Exposure to high TSLP levels during neonatal hematopoiesis resulted in drastic expansion of peripheral pre- and immature B-lymphocytes, causing B-lymphoproliferative disorder associated with major organ infiltration and subsequent death, a previously unappreciated systemic effect of TSLP. These observations demonstrate that local skin perturbations can drive a lethal systemic disease and have important implications for a wide range of humoral and autoimmune diseases with skin manifestations
    corecore