210 research outputs found

    B Cell Receptor–independent Stimuli Trigger Immunoglobulin (Ig) Class Switch Recombination and Production of IgG Autoantibodies by Anergic Self-Reactive B Cells

    Get PDF
    In both humans and animals, immunoglobulin (Ig)G autoantibodies are less frequent but more pathogenic than IgM autoantibodies, suggesting that controls over Ig isotype switching are required to reinforce B cell self-tolerance. We have used gene targeting to produce mice in which hen egg lysozyme (HEL)-specific B cells can switch to all Ig isotypes (SWHEL mice). When crossed with soluble HEL transgenic (Tg) mice, self-reactive SWHEL B cells became anergic. However, in contrast to anergic B cells from the original nonswitching anti-HEL × soluble HEL double Tg model, self-reactive SWHEL B cells also displayed an immature phenotype, reduced lifespan, and exclusion from the splenic follicle. These differences were not related to their ability to Ig class switch, but instead to competition with non-HEL–binding B cells generated by VH gene replacement in SWHEL mice. When activated in vitro with B cell receptor (BCR)-independent stimuli such as anti-CD40 monoclonal antibody plus interleukin 4 or lipopolysaccharide (LPS), anergic SWHEL double Tg B cells proliferated and produced IgG anti-HEL antibodies as efficiently as naive HEL-binding B cells from SWHEL Ig Tg mice. These results demonstrate that no intrinsic constraints to isotype switching exist in anergic self-reactive B cells. Instead, production of IgG autoantibodies is prevented by separate controls that reduce the likelihood of anergic B cells encountering BCR-independent stimuli. That bacteria-derived LPS could circumvent these controls may explain the well-known association between autoantibody-mediated diseases and episodes of systemic infection

    The impact of obesity and bariatric surgery on the immune microenvironment of the endometrium

    Get PDF
    BACKGROUND: The incidence of endometrial cancer is rising in parallel with the obesity epidemic. Obesity increases endometrial cancer risk and weight loss is protective, but the underlying mechanisms are incompletely understood. We hypothesise that the immune microenvironment may influence susceptibility to malignant transformation in the endometrium. The aim of this study was to measure the impact of obesity and weight loss on the immunological landscape of the endometrium. METHODS: We conducted a prospective cohort study of women with class III obesity (body mass index, BMI ≥ 40 kg/m(2)) undergoing bariatric surgery or medically-supervised low-calorie diet. We collected blood and endometrial samples at baseline, and two and 12 months after weight loss intervention. Serum was analysed for inflammatory markers CRP, IL-6 and TNF-α. Multiplex immunofluorescence was used to simultaneously identify cells positive for immune markers CD68, CD56, CD3, CD8, FOXP3 and PD-1 in formalin-fixed paraffin-embedded endometrial tissue sections. Kruskal–Wallis tests were used to determine whether changes in inflammatory and immune biomarkers were associated with weight loss. RESULTS: Forty-three women with matched serum and tissue samples at all three time points were included in the analysis. Their median age and BMI were 44 years and 52 kg/m(2), respectively. Weight loss at 12 months was greater in women who received bariatric surgery (n = 37, median 63.3 kg) than low-calorie diet (n = 6, median 12.8 kg). There were significant reductions in serum CRP (p = 3.62 × 10(−6), r = 0.570) and IL-6 (p = 0.0003, r = 0.459), but not TNF-α levels, with weight loss. Tissue immune cell densities were unchanged except for CD8+ cells, which increased significantly with weight loss (p = 0.0097, r = −0.323). Tissue CD3+ cell density correlated negatively with systemic IL-6 levels (p = 0.0376; r = −0.318). CONCLUSION: Weight loss is associated with reduced systemic inflammation and a recruitment of protective immune cell types to the endometrium, supporting the concept that immune surveillance may play a role in endometrial cancer prevention

    Aircraft-Engine Particulate Matter Emissions from Conventional and Sustainable Aviation Fuel Combustion: Comparison of Measurement Techniques for Mass, Number, and Size

    Get PDF
    Sustainable aviation fuels (SAFs) have different compositions compared to conventional petroleum jet fuels, particularly in terms of fuel sulfur and hydrocarbon content. These differences may change the amount and physicochemical properties of volatile and non-volatile particulate matter (nvPM) emitted by aircraft engines. In this study, we evaluate whether comparable nvPM measurement techniques respond similarly to nvPM produced by three blends of SAFs compared to three conventional fuels. Multiple SAF blends and conventional (Jet A-1) jet fuels were combusted in a V2527-A5 engine, while an additional conventional fuel (JP-8) was combusted in a CFM56-2C1 engine. We evaluated nvPM mass concentration measured by three real-Time measurement techniques: photoacoustic spectroscopy, laser-induced incandescence, and the extinction-minus-scattering technique. Various commercial instruments were tested, including three laser-induced incandescence (LII) 300s, one photoacoustic extinctiometer (PAX), one micro soot sensor (MSS+), and two cavity-Attenuated phase shift PMSSA (CAPS PMSSA) instruments. Mass-based emission indices (EIm) reported by these techniques were similar, falling within 30ĝ€¯% of their geometric mean for EIm above 100ĝ€¯mg per kg fuel (approximately 10ĝ€¯μgĝ€¯PMĝ€¯m-3 at the instrument); this geometric mean was therefore used as a reference value. Additionally, two integrative measurement techniques were evaluated: filter photometry and particle size distribution (PSD) integration. The commercial instruments used were one tricolor absorption photometer (TAP), one particle soot absorption photometer (PSAP), and two scanning mobility particle sizers (SMPSs). The TAP and PSAP were operated at 5ĝ€¯% and 10ĝ€¯% of their nominal flow rates, respectively, to extend the life of their filters. These techniques are used in specific applications, such as on board research aircraft to determine particulate matter (PM) emissions at cruise. EIm reported by the alternative techniques fell within approximately 50ĝ€¯% of the mean aerosol-phase EIm. In addition, we measured PM-number-based emission indices using PSDs and condensation particle counters (CPCs). The commercial instruments used included TSI SMPSs, a Cambustion differential mobility spectrometer (DMS500), and an AVL particle counter (APC), and the data also fell within approximately 50ĝ€¯% of their geometric mean. The number-based emission indices were highly sensitive to the accuracy of the sampling-line penetration functions applied as corrections. In contrast, the EIm data were less sensitive to those corrections since a smaller volume fraction fell within the size range where corrections were substantial. A separate, dedicated experiment also showed that the operating laser fluence used in the LII 300 laser-induced incandescence instrument for aircraft-engine nvPM measurement is adequate for a range of SAF blends investigated in this study. Overall, we conclude that all tested instruments are suitable for the measurement of nvPM emissions from the combustion of SAF blends in aircraft engines

    Aircraft Engine Particulate Matter Emissions from Sustainable Aviation Fuels: Results from Ground-Based Measurements during the NASA/DLR Campaign ECLIF2/ND-MAX

    Get PDF
    The use of alternative jet fuels by commercial aviation has increased substantially in recent years. Beside the reduction of carbon dioxide emission, the use of sustainable aviation fuels (SAF) may have a positive impact on the reduction of particulate emissions. This study summarizes the results from a ground-based measurement activity conducted in January 2018 as part of the ECLIF2/ND-MAX campaign in Ramstein, Germany. Two fossil reference kerosenes and three different blends with the renewable fuel component HEFA-SPK (Hydroprocessed Esters and Fatty Acids Synthetic Paraffinic Kerosene) were burned in an A320 with V2527-A5 engines to investigate the effect of fuel naphthalene/aromatic content and the corresponding fuel hydrogen content on non-volatile particle number and mass emissions. Reductions up to 70% in non-volatile particle mass emission compared to the fossil reference fuel were observed at low power settings. The reduction trends to decrease with increasing power settings. The fuels showed a decrease in particle emission with increasing fuel hydrogen content. Consequently, a second fossil fuel with similar hydrogen content as one of the HEFA blends featured similar reduction factors in particle mass and number. Changes in the fuel naphthalene content had significant impact on the particle number emission. A comparison to in-flight emission data shows similar trends at cruise altitudes. The measurements highlight the importance of individual fuel components in regulating engine emissions, particularly at the low thrust settings typically employed during ground operations (e.g. during idle and taxi). Therefore, when selecting and mixing SAF blends to meet present fuel-certification standards, attention should be paid to minimizing complex aromatic content to achieve the greatest possible air quality and climate benefits

    Measuring spirometry in a lung cancer screening cohort highlights possible underdiagnosis and misdiagnosis of Chronic Obstructive Pulmonary Disease

    Get PDF
    Introduction: Chronic Obstructive Pulmonary Disease (COPD) is underdiagnosed, and measurement of spirometry alongside low-dose computed tomography (LDCT) screening for lung cancer is one strategy to increase earlier diagnosis of this disease. // Methods: Ever-smokers at high risk of lung cancer were invited to the Yorkshire Lung Screening Trial for a Lung Health Check (LHC) comprising LDCT screening, pre-bronchodilator spirometry and smoking cessation service. In this cross-sectional study we present data on participant demographics, respiratory symptoms, lung function, emphysema on imaging and both self-reported and primary care diagnoses of COPD. Multivariable logistic regression analysis identified factors associated with possible underdiagnosis and misdiagnosis of COPD in this population, with airflow obstruction (AO) defined as FEV1/FVC ratio <0.70. // Results: Of 3,920 LHC attendees undergoing spirometry, 17% had undiagnosed AO with respiratory symptoms, representing potentially undiagnosed COPD. Compared to those with a primary care COPD code, this population had milder symptoms, better lung function, and were more likely to be current smokers (p≤0.001 for all comparisons). Of 836 attendees with a primary care COPD code who underwent spirometry, 19% did not have AO, potentially representing misdiagnosed COPD, although symptom burden was high. // Discussion: Spirometry offered alongside LDCT screening can potentially identify cases of undiagnosed and misdiagnosed COPD. Future research should assess the downstream impact of these findings to determine if any meaningful changes to treatment and outcomes occurs, and also to assess the impact on co-delivering spirometry on other parameters of LDCT screening performance such as participation and adherence. Additionally, work is needed to better understand the aetiology of respiratory symptoms in those with misdiagnosed COPD, to ensure this highly symptomatic group receive evidence-based interventions

    How should performance in EBUS mediastinal staging in lung cancer be measured?

    Get PDF
    There has been a paradigm shift in mediastinal staging algorithms in non-small cell lung cancer over the last decade in the United Kingdom (UK). This has seen endoscopic nodal staging (predominantly endobronchial ultrasound, EBUS) almost replace surgical staging (predominantly mediastinoscopy) as the pathological staging procedure of first choic

    Yorkshire Lung Screening Trial (YLST): protocol for a randomised controlled trial to evaluate invitation to community-based low-dose CT screening for lung cancer versus usual care in a targeted population at risk

    Get PDF
    © Author(s) (or their employer(s)) 2020. Re-use permitted under CC BY. Published by BMJ. INTRODUCTION: Lung cancer is the world's leading cause of cancer death. Low-dose computed tomography (LDCT) screening reduced lung cancer mortality by 20% in the US National Lung Screening Trial. Here, we present the Yorkshire Lung Screening Trial (YLST), which will address key questions of relevance for screening implementation. METHODS AND ANALYSIS: Using a single-consent Zelen's design, ever-smokers aged 55-80 years registered with a general practice in Leeds will be randomised (1:1) to invitation to a telephone-based risk-assessment for a Lung Health Check or to usual care. The anticipated number randomised by household is 62 980 individuals. Responders at high risk will be invited for LDCT scanning for lung cancer on a mobile van in the community. There will be two rounds of screening at an interval of 2 years. Primary objectives are (1) measure participation rates, (2) compare the performance of PLCOM2012 (threshold ≥1.51%), Liverpool Lung Project (V.2) (threshold ≥5%) and US Preventive Services Task Force eligibility criteria for screening population selection and (3) assess lung cancer outcomes in the intervention and usual care arms. Secondary evaluations include health economics, quality of life, smoking rates according to intervention arm, screening programme performance with ancillary biomarker and smoking cessation studies. ETHICS AND DISSEMINATION: The study has been approved by the Greater Manchester West research ethics committee (18-NW-0012) and the Health Research Authority following review by the Confidentiality Advisory Group. The results will be disseminated through publication in peer-reviewed scientific journals, presentation at conferences and on the YLST website. TRIAL REGISTRATION NUMBERS: ISRCTN42704678 and NCT03750110
    corecore