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ARTICLE OPEN

Molecular Biology

The impact of obesity and bariatric surgery on the immune
microenvironment of the endometrium
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Richard Byers3,5 and Emma J. Crosbie 2,4✉
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BACKGROUND: The incidence of endometrial cancer is rising in parallel with the obesity epidemic. Obesity increases endometrial
cancer risk and weight loss is protective, but the underlying mechanisms are incompletely understood. We hypothesise that the
immune microenvironment may influence susceptibility to malignant transformation in the endometrium. The aim of this study
was to measure the impact of obesity and weight loss on the immunological landscape of the endometrium.
METHODS: We conducted a prospective cohort study of women with class III obesity (body mass index, BMI ≥ 40 kg/m2)
undergoing bariatric surgery or medically-supervised low-calorie diet. We collected blood and endometrial samples at baseline, and
two and 12 months after weight loss intervention. Serum was analysed for inflammatory markers CRP, IL-6 and TNF-α. Multiplex
immunofluorescence was used to simultaneously identify cells positive for immune markers CD68, CD56, CD3, CD8, FOXP3 and PD-
1 in formalin-fixed paraffin-embedded endometrial tissue sections. Kruskal–Wallis tests were used to determine whether changes in
inflammatory and immune biomarkers were associated with weight loss.
RESULTS: Forty-three women with matched serum and tissue samples at all three time points were included in the analysis. Their
median age and BMI were 44 years and 52 kg/m2, respectively. Weight loss at 12 months was greater in women who received
bariatric surgery (n= 37, median 63.3 kg) than low-calorie diet (n= 6, median 12.8 kg). There were significant reductions in serum
CRP (p= 3.62 × 10−6, r= 0.570) and IL-6 (p= 0.0003, r= 0.459), but not TNF-α levels, with weight loss. Tissue immune cell densities
were unchanged except for CD8+ cells, which increased significantly with weight loss (p= 0.0097, r=−0.323). Tissue CD3+ cell
density correlated negatively with systemic IL-6 levels (p= 0.0376; r=−0.318).
CONCLUSION: Weight loss is associated with reduced systemic inflammation and a recruitment of protective immune cell types to
the endometrium, supporting the concept that immune surveillance may play a role in endometrial cancer prevention.

International Journal of Obesity; https://doi.org/10.1038/s41366-021-01027-6

INTRODUCTION
Endometrial cancer is the most common gynaecological malig-
nancy in the United Kingdom and its incidence is rising [1].
Obesity is a major risk factor for the disease, with every 5 kg/m2

increase in body mass index (BMI) conferring a 1.6-fold higher risk
[2]. Women with a BMI > 40 kg/m2 are particularly vulnerable, with
lifetime risks as high as 10–15% [3]. With 58% of the world
population estimated to be overweight or obese by the year 2030

[4], the burden of endometrial cancer is set to continue [5]. Whilst
most are detected early and cured by hysterectomy, women with
high risk or late stage endometrial cancer have poor outcomes [6].
An improved understanding of the biological mechanisms
underpinning obesity-associated endometrial cancer could lead
to new targets for prevention and treatment [7]. Obesity is
thought to drive endometrial carcinogenesis through adipose-
derived oestrogen, which, when unopposed by progesterone in
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postmenopausal and premenopausal anovulatory women, pro-
motes endometrial proliferation and tumourigenesis [8]. Other
contributors include metabolic dysfunction, insulin resistance and
hyperinsulinaemia, factors that further stimulate endometrial
growth through direct and indirect pathways [9]. Obesity is a
chronic pro-inflammatory state, with increased circulating levels of
the inflammatory markers C-reactive protein (CRP), interleukin-6
(IL-6) and tumour necrosis factor-alpha (TNF-α) [10]. These
inflammatory markers may mediate alterations in the immune
microenvironment of the endometrium that support neoplastic
transformation.
Weight loss achieved and sustained through bariatric surgery or

dietary intervention has been shown to reduce endometrial
cancer risk [11–14]. In a prospective study of women undergoing
gastric bypass or sleeve gastrectomy-induced weight loss, we
found occult endometrial cancer or its precursor lesion, atypical
hyperplasia, in 14% of those sampled at baseline [15]. Sponta-
neous resolution of atypical hyperplasia was observed 2 months
following bariatric surgery in 3/6 women and a further 2/6 were
successfully managed with intrauterine progestin. In those with
histologically normal endometrium, we observed a weight loss-
associated down-regulation of pro-proliferative signalling path-
ways, including reductions in proliferation marker Ki-67. These
findings support the hypothesis that weight loss instigates
changes in the endometrium that influence its susceptibility to
malignant transformation. We propose that the immune micro-
environment is a dynamic regulator of endometrial health that is
perturbed in obesity and restored with weight loss. The aim of this
study was to measure the impact of obesity and weight loss on
the immunological landscape of the endometrium using matched
serum and endometrial tissue samples from our cohort of women
undergoing intentional weight loss.

METHODS
Study participants
This was a prospective cohort study of women with morbid obesity (BMI ≥
40 kg/m2) undergoing weight loss management at Salford Royal NHS
Foundation Trust [15]. Approval was obtained from the North West
Research Ethics Committee (12/NW/0050) and the study was prospectively
registered (ISRCTN17241389). All participants gave written, informed
consent. Height was measured using a stadiometer, weight was measured
using electronic scales after removal of bulky clothing, and BMI derived
(kg/m2). Blood and endometrial tissue were collected at baseline, and two
and 12 months following medically-supervised low-calorie diet or bariatric
surgery, either gastric bypass, sleeve gastrectomy or gastric banding.
Postmenopausal status was defined as last menstrual bleed >12 months
previously. Premenopausal participants were sampled in the late
proliferative phase, except for baseline biopsies of women undergoing
bariatric surgery, which were obtained under general anaesthetic.
Endometrial sampling was by Pipelle© (Carefusion, UK) or MedGyn
Endosampler© (MedGyn, Illinois, USA). Tissue was fixed in 10% neutral
buffered formalin prior to embedding in paraffin wax. Histopathological
interpretation of haematoxylin and eosin-stained sections was by specialist
gynaecological pathologists (RJM and JB) according to the WHO
classification system [16, 17]. Serum IL‐6 and TNF-α were measured using
a DuoSet ELISA development kit (R&D Systems, Abingdon, UK) and high
sensitivity CRP (hsCRP) was measured by an in‐house antibody sandwich
ELISA technique with antihuman CRP primary antibodies from Abcam
(Cambridge, UK).

Immunohistochemistry
Four-micron sections were cut from formalin-fixed paraffin-embedded
tissue samples and multiplex immunofluorescent staining was performed
using a Ventana Autostaining Robot (Ventana Medical Systems, Arizona,
USA), with automation of deparaffinisation, antigen retrieval and incuba-
tion but manual application of reagents. Antibodies (Table S1) were
applied sequentially in the following order, with fluorescent disclosure of
each antibody with a different fluorophore, and antibody denaturation
between each primary antibody application: CD8, CD68, CD3, FOXP3,
CD56, PD-1. Following multiplex staining, all sections were cover-slipped

with the Prolong aqueous mounting agent (Thermo Fisher, Massachusetts,
USA) that also contained DAPI for counter-staining. The detailed multiplex
staining protocol is given in Supplementary Methods.

Tissue imaging and analysis
Stained sections were captured by slide scanning and image acquisition
using the Vectra 3.05 multispectral imager (PerkinElmer, Massachusetts,
USA). Each section was first scanned at a magnification of 10x, producing a
low-resolution overview of the tissue. Up to 10 regions of interest were
randomly sampled from the low-resolution overview image, using
Phenochart whole slide viewer (PerkinElmer, Massachusetts, USA). These
regions were then scanned at a higher magnification of ×20 (0.496 μm/
pixel). Each scanned region consisted of nine multispectral images (MSI)
that were automatically stitched together.
MSI were unmixed and analysed in three stages: spectral unmixing, cell

segmentation and cell phenotyping. Linear spectral unmixing was carried
out using InForm 2.4 software (PerkinElmer, Massachusetts, USA). For
unmixing, a spectral library was built comprising individual fluorophore
spectra. Each spectrum was acquired from slides that were single stained
for each antibody, using the same experimental parameters as the
multiplex experiment. A slide stained with DAPI only was used to extract
the DAPI spectrum. A slide that underwent all steps in the multiplex
experiment without application of antibodies or fluorophores was used to
extract the spectrum of tissue auto-fluorescence. After spectral unmixing,
six resultant images were generated representative of the staining
intensities of each fluorophore (Fig. 1) in which the intensity at each pixel
is proportional to the quantity of fluorophore and its corresponding
epitope, at that pixel.
Cell segmentation was conducted using Inform software. A two-step process

was carried out using only the DAPI channel. First, nuclear components were
detected using nuclear stain intensity. Then the cytoplasm around each
nucleus was simulated by cell expansion of 2 μm and measurements
generated for marker intensity in different compartments (mean, minimum,
maximum and standard deviation of intensity in cytoplasm or nucleus).
Cell scoring was carried out using an in-house software developed in the

imaging department of the University of Manchester [18]. The software
automatically determines if a cell is positive or negative for each stain using a
pre-determined threshold cut-off. Positivity for each cell type was determined
by the intensity of each marker in the primary cell compartment where it was
usually expressed. In our study, markers were cytoplasmic or membranous.
Before cell scoring, the intensity of each marker was re-scaled onto a grey-
scale colour map, where the brightest and darkest values corresponded to
the 99% and 1% percentiles of the marker’s pixel intensities in the full
dataset. Having a consistent colour-map per marker ensured that the same
intensity value was represented with equal brightness in all images.
Guided by a pathologist (RB), a single threshold for each marker was

selected as a cut-off to determine positivity across the entire dataset. The
threshold was identified by its ability to separate positive from negative
cells in a set of 20 regions of interest from different patients. The resultant
number of positive cells per unit area was measured in each of the patient
samples for each of the antigens assayed.

Statistical analysis
All statistical analyses were conducted in R 3.5.1 × 64/RStudio 1.0.143 × 64.
To determine suitability of data for parametric testing, QQ normality plots
were called for both response variables and response variable linear model
residuals vs. standardised residuals for the six tissue immune markers (CD8,
CD68, CD3, FOXP3, CD56, PD-1), three serum inflammatory markers (hsCRP,
IL‐6, TNF-α) and clinical parameters (BMI and weight). Only BMI and weight
held distributions approaching normality. Homogeneity of variance was
probed by Barlett’s Test followed by Levene’s Test. Fligner-Killeen tests
were used for variables determined to have departures from normality. All
variables except for FOXP3, CRP, TNF-α and BMI demonstrated hetero-
scedastic variances.
Normality and variance violations prohibited parametric analysis of data,

but only 7% of observations were suitable for BoxCox transformation into
normal distributions. Kruskal–Wallis tests were therefore used to determine
if there were any significant changes in immune, inflammatory and clinical
biomarkers between baseline and 2 months, and between baseline and
12 months. Dunn’s multiple comparisons post hoc was implemented to
determine groups with significant differences with a Sidak or Benjamini
Hochberg multiple comparisons adjustment.
Time series correlation modelling explored relationships between tissue

and serum biomarkers. Nonlinear mixed effect (nlme) modelling was
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trialled to accommodate distribution differences, unequal class sizes,
autocorrelation, and heteroscedastic variances; however, not all markers
successfully converged using this method. Repeated measures correlation
modelling was therefore used since it protects against class imbalance,
correlated error rates and heteroscedasticity. To alleviate requirements for
normally distributed data we bootstrapped variable-specific distributions
during model generation.

RESULTS
Study participants
From a total cohort of 80 participants, 43 had matched serum and
tissue samples at baseline, and 2 months and 12 months after
weight loss intervention and were included in this study. Their
median age and BMI at baseline were 44 years (range 24–60 years)
and 52 kg/m2 (range 38–69 kg/m2), respectively. Most (37/43,
86.0%) were premenopausal. Thirty-seven women underwent
bariatric surgery, either gastric bypass (26/37, 70.3%), sleeve
gastrectomy (11/37, 29.7%) or gastric banding (1/37, 2.7%), and
6/43 (14%) underwent medically-supervised low-calorie diet. At
baseline, six women had occult atypical endometrial hyperplasia,
five of which resolved with weight loss and/or intrauterine
progestin, as previously described [15]. Median weight loss was
greater for women who underwent bariatric surgery compared to

those who followed a low-calorie diet, both at 2 months [−15.1 kg
(MAD 4.59, p= 0.0201) vs. −1.7 kg (MAD 2.48 kg, p= 0.936)
respectively] and 12 months [−63.3 kg (MAD 17.64, p < 0.0001)
vs. −13.0 kg (MAD 11.1, p= 0.0679) respectively]. Median BMI was
53 kg/m2 and 47.1 kg/m2 at baseline, 45 kg/m2 (p= 0.0002) and
46.7 kg/m2 (p= 0.936) at 2 months and 35 kg/m2 (p < 0.0001) and
43.6 kg/m2 (p= 0.201) at 12 months in women undergoing
bariatric surgery and low-calorie diet, respectively.
Systemic inflammatory markers CRP, IL-6 and TNF-α were mildly

elevated at baseline (Table 1). Median CRP was significantly lower at
12 months (p= 0.0086) compared to baseline (Fig. 2). CRP correlated
significantly with weight loss (p= 3.62 × 10−6, r= 0.570) and BMI
reduction (p= 0.00014, r= 0.491) (Fig. 3). Median IL-6 showed
significant reductions at 2 months (p= 0.0021) and 12 months (p <
0.00001) compared to baseline (Fig. 2), which correlated with weight
loss (p= 0.00032, r= 0.459) and BMI reduction (p= 3.15 × 10−5, r=
0.53) (Fig. 3). TNF-α levels did not change significantly over time,
with weight loss or with BMI reduction.
The density of endometrial CD56, CD68, CD3, FOXP3, CD56 and PD-

1-positive immune cells at baseline, 2 months and 12 months after
weight loss intervention is shown in Table 2 and Fig. 2. The density of
CD8+ immune cells was higher at 2 months and 12 months
compared to baseline (Table 2) and inversely correlated with weight

Fig. 1 Multiplex immunofluorescence and automated image analysis to measure tumour infiltrating immune cells. Each of (a–h)
correspond to the same tissue region, demonstrating the raw unmixed multispectral image containing all immunofluorescent stains (a) and
resultant separately resolved cellular populations after spectral unmixing in (c–h), specifically in (c) CD8+ cells, (d) CD68+ cells, (e) CD3+ cells,
(f) FOXP3+ cells, (g) PD-1+ cells, and (h) CD56+ cells; DAPI nuclear counterstain shown in (b) was used for nuclear segmentation and
resultant cellular segmentation; magnification × 200 in all panels and scale bar 100 microns. All markers are displayed using pseudo-colours.

Table 1. Systemic inflammatory markers in matched serum samples.

Serum biomarker Baseline (median) 2 months (median) 12 months (median) Baseline – 2 months Baseline – 12 months

CRP (μg/ml) 5.9 4.2 1.7 p= 0.5572 p < 0.0086a

IL-6 (pg/ml) 4.8 1.7 1.2 p= 0.0021a p < 0.0001a

TNF-α (pg/ml) 29.1 31.4 25.2 p= 0.7307 p= 0.8609
aDenotes statistically significant result.
Bold values indicates statistically significant p < 0.05 values.
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(p= 0.0097, r=−0.323) and BMI (p= 0.0093, r=−0.325) (Fig. 3). The
density of CD68+ , FOXP3+ , PD-1+ and CD56+ immune cells
showed no significant change with time (Table 2, Fig. 2) nor
correlation with weight loss or BMI. The density of CD3+ immune
cells was inversely correlated with systemic IL-6 levels (p= 0.037; r=
−0.318) (Table 3, Fig. 4). No significant associations were seen
between the other markers (Table 3). Positive associations between
CD3 and CD68-positive immune cell infiltrates and systemic CRP
levels did not reach statistical significance; neither did the positive
association between CD68+ immune cells and systemic TNF-α levels.

DISCUSSION
Obesity increases endometrial cancer risk and weight loss is
protective, but the underlying mechanisms are incompletely
understood. Here, multiplex fluorescence immunohistochemistry

was used to quantify and phenotype immune cells in the
endometrium before and after weight loss in women with class
III obesity. There was a significant rise in CD8+ immune cell
density at 2 and 12 months that correlated with weight loss. We
also found significant reductions in systemic inflammatory
markers CRP and IL-6 with weight loss, the latter inversely
correlated with CD3+ immune cell density in the endometrium.
Taken together, these findings indicate that the immunological
landscape of the endometrium may be affected by obesity and
weight loss, and by extension, that the immune microenviron-
ment may influence susceptibility to neoplastic change.
Previous work has shown a strong positive correlation between

serum levels of pro-inflammatory cytokines and adipokines and
endometrial cancer risk [19]. In a prospective study of 107 women
sampled before and after bariatric surgery, Linkov et al. (2017)
reported near normalisation of serum CRP and IL-6 levels,

Fig. 2 Change in clinical, inflammatory and immune biomarkers with time. Box and jitter plots for biomarkers across time points, including
weight, BMI, systemic inflammatory and immune cell marker densities. Y axes are log scale. Significant p values are provided at bracketed
comparators where relevant (Kruskal–Wallis tests with Dunn–Šidák corrections). The α for all tests was 0.05. Significant reductions were
observed for weight between baseline: 12 months (p < 0.0001); BMI between baseline: 2 months (p= 0.0003) and baseline: 12 months (p <
0.0001); CRP between baseline: 12 months (p= 0.0086); and for IL-6 baseline: 2 months (p= 0.0021) and baseline: 12 months (p < 0.0001).
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amongst other pro-inflammatory biomarkers, and concluded that
their change may reflect the protective effect of weight loss on
endometrial cancer risk [20]. We found one previous study
investigating the impact of obesity and weight loss on the

immunological landscape of the endometrium [21]. In paired
endometrial samples before and 12 months after bariatric
surgery-induced weight loss, the authors found no significant
difference in CD3+ or CD20+ immune cell density on tissue
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Fig. 3 Correlations between weight, BMI, inflammatory biomarkers and immune infiltrates. Repeated measures correlation plots are
shown. Significant positive correlations were observed between reduced systemic inflammatory marker CRP and reduced weight (a) or BMI (b)
(r= 0.57, p= 3.62 × 10−6 and r= 0.491, p= 0.0001, respectively). Significant positive correlations were observed between reduced systemic
inflammatory marker IL-6 and reduced weight c) or BMI (d) (r= 0.459, p= 0.0003 and r= 0.530, p= 3.15 × 10−5, respectively). Significant
negative correlations were observed between increased CD8+ immune cells and reduced weight (e) or BMI (f) (r=−0.323, p= 0.0097 and r=
−0.325, p= 0.0093, respectively). Repeated measures correlation distributions were bootstrapped from data structures to accommodate
potential unequal variance and distributions within the time dependent analysis. The α for all tests was 0.05.
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microarrays for a subset of their overall study population. They
did not measure changes in macrophage (CD68), natural killer cell
(CD56), cytotoxic T cell (CD8), regulatory T cell (FOXP3) or
programmed cell death protein 1 (PD-1) expressing immune cell
populations and were therefore not able to make firm conclu-
sions as to the impact of obesity and weight loss on the
endometrial immune microenvironment.
Here, we show convincing evidence of a change in the

immunological landscape of morphologically normal endome-
trium in women with class III obesity who undergo significant

weight loss. The reduction in systemic inflammation that
accompanies weight loss is associated with a recruitment of
protective immune cell types to the endometrium, in particular
CD8+ cytotoxic T cells. This is consistent with previous work
comparing circulating immune cell populations in obese and lean
study participants that found higher CD8+ T cell counts in lean
individuals [22]. CD8+ T-cells are essential mediators of cancer
immune surveillance, keeping tissues healthy through the
recognition and selective elimination of cells expressing cancer-
specific antigens [23]. An influx of these highly specialised anti-
cancer immune cells to the endometrium with weight loss
suggests they may have a role in restoring endometrial health and
protecting against endometrial cancer. It is already well estab-
lished that high volume tumour infiltrating CD8+ lymphocytes
portend good survival outcomes from colorectal [24], melanoma
[25] and many other tumour types [26], including endometrial
cancer [27, 28]. Extrapolating these findings to a role for CD8+
T cells in maintaining endometrial health, restoring health
through risk-reducing interventions e.g. weight loss, and prevent-
ing cancer is an appealing concept worthy of further investigation.
It is interesting that systemic IL-6 levels were inversely correlated
with endometrial CD3+ T cells since the cancer-promoting
properties of IL-6 are well known. It has been shown to stimulate
growth, DNA methylation and metastasis and to destabilise the
immune microenvironment [29]. Its reduction with weight loss
may therefore encourage the recruitment of CD3+ and other
protective immune cells to the endometrium. A favourable
immunological landscape may enable the natural clearance of
latent endometrial precursor and pre-cancer lesions, protecting
endometrial health and preventing endometrial cancer [30].
This is the first study, to our knowledge, that compares immune

biomarkers in serum and endometrial tissue before and after weight
loss in women with class III obesity. Serial measurements across
three time points add to the strength of the findings and distinguish
short- and long-term effects of weight loss. It is interesting that
changes to blood and tissue immune biomarkers were observed as
early as 2 months after weight loss intervention, before the majority
of excess body weight had been shed. Changes to the immune
microenvironment coincided with the natural clearance of atypical
hyperplasia in 3/6 women with occult endometrial abnormalities at
baseline, indicating their potential role in the restoration of
endometrial health. Indeed, resolution of 5/6 endometrial abnorm-
alities occurred by 6 months post-bariatric surgery, before women
had achieved a healthy body weight. Immune cell infiltrates vary
with menstrual cycle phase and menopausal status [31], and this
was controlled for where possible. Multiplex immunofluorescence
labelling enabled simultaneous quantification and phenotyping of
immune cell markers using a single tissue section. This is
advantageous for analysis of small biopsy samples and enables an
appreciation of the interplay between different immune cell types
within different tissue compartments.
A limitation of our work is the relatively small sample set;

however, it derives from a larger cohort of 80 participants and

Table 2. Endometrial immune cell infiltrates in matched tissue samples.

Tissue immune cell
biomarker

Baseline Median %
positive cells

2 months Median %
positive cells

12 months Median %
positive cells

Baseline –
2 months

Baseline –
12 months

CD56 0.0071 0.0069 0.0116 p= 0.7978 p= 0.7737

CD68 0.0019 0.0012 0.0008 p= 0.7490 p= 0.6634

CD3 0.0019 0.0009 0.0013 p= 0.3485 p= 0.1717

CD8 0.0037 0.0038 0.0056 p= 0.3074 p= 0.3016

FOXP3 0.00069 0.00069 0.00066 p= 0.6672 p= 0.6445

PD-1 0.0011 0.0008 0.0012 p= 0.5822 p= 0.4360

Median total number of
cells counted/sample

14,675 7966 9749 Not applicable

Table 3. Correlation of systemic inflammatory markers with
endometrial immune cell infiltrates.

CRP IL-6 TNF-α

CD8+ 0.7720 0.1658 0.3747

CD68+ 0.1852 0.4618 0.1473

CD3+ 0.2539 0.0375a 0.48457

FOXP3+ 0.8527 0.7855 0.7209

CD56+ 0.6401 0.9321 0.4723

PD-1+ 0.5295 0.8424 0.8989

Table shows p values.
aDenotes statistically significant result.

Fig. 4 Inverse correlation of CD3+ immune cell infiltrate density
with IL-6 across time points. A repeated measures correlation plot
of Log CD3+ immune cell density vs. IL-6 intensity. A significant
inverse correlation was observed (p= 0.038, r=−0.318). Repeated
measures correlation distributions were bootstrapped from data
structure to accommodate potential unequal variance and distribu-
tions within the time dependent analysis. The α for all tests was 0.05.
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highlights the challenge of longitudinal studies involving sequen-
tial invasive sampling. We were unable to control for potential
confounding factors, particularly age and menopausal status, and
the numbers were too small to allow subgroup analysis by weight
loss intervention. Although interesting, our findings are correlative
and their significance is uncertain. We were limited by the number
of fluorophores we could multiplex in one experiment, precluding
the detailed phenotyping of immune cell sub-populations, for
example M1 and M2 macrophages. Endometrial recruitment of
protective M2 macrophages with weight loss may have been
masked by the simultaneous loss of pro-inflammatory M1
macrophages, for instance, and our study design did not allow
these cellular sub-populations to be differentiated from each
other. Other immune cells may also be important in regulating
endometrial health and more research is needed.
If validated in larger studies, the insights provided here could

have important clinical implications. Immune biomarkers could
enable individualised endometrial cancer risk prediction and also
measure the success of risk-reducing interventions. Research
could be directed towards encouraging recruitment of protective
immune cells to the endometrium to boost the natural clearance
of precursor and precancerous lesions. We urgently need
innovative solutions to avert the impending surge of endome-
trial cancer diagnoses predicted by the escalating global obesity
problem.
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