14 research outputs found
How is it best to deliver care in acute medical units? A systematic review
The majority of medical patients presenting to hospital in the UK are cared for in acute medical units (AMUs). Such units are also increasingly present internationally. Care delivery varies across units: this review aims to examine the evidence for how best to deliver AMU care.
Six electronic databases and grey literature were searched. Inclusion criteria comprised interventions applied to undifferentiated patients in AMU settings. All studies were quality assessed. A narrative approach was undertaken.
Nine studies, all conducted in the UK or Ireland, evaluated 1.3 million episodes, 3617 patients and 49 staff. There was single study evidence for beneficial effects of: enhanced pharmacy care, a dedicated occupational therapy service, an all-inclusive consultant work pattern, a rapid-access medical clinic and formalized handovers. Two studies found increased consultant presence was associated with reduced mortality; one of these studies found an association with a reduction in 28-day readmissions; and the other found an association with an increased proportion of patients discharged on the day they were admitted. Three studies provide evidence of the beneficial effects of multiple interventions developed from local service reviews.
Overall, the quality of the evidence was limited. This review has identified operationally relevant evidence that increased consultant presence is associated with improved outcomes of care; has highlighted the potential to improve outcomes locally through service reviews; and has demonstrated an important knowledge gap of how best to deliver AMU care. These findings have importance given the challenges acute services currently face
Analysis of compound heterozygotes reveals that the mouse floxed Pax6 tm1Ued allele produces abnormal eye phenotypes
Analysis of abnormal phenotypes produced by different types of mutations has been crucial for our understanding of gene function. Some floxed alleles that retain a neomycin-resistance selection cassette (neo cassette) are not equivalent to wild-type alleles and provide useful experimental resources. Pax6 is an important developmental gene and the aim of this study was to determine whether the floxed Pax6(tm1Ued) (Pax6(fl)) allele, which has a retained neo cassette, produced any abnormal eye phenotypes that would imply that it differs from the wild-type allele. Homozygous Pax6(fl/fl) and heterozygous Pax6(fl/+) mice had no overt qualitative eye abnormalities but morphometric analysis showed that Pax6(fl/fl) corneas tended be thicker and smaller in diameter. To aid identification of weak effects, we produced compound heterozygotes with the Pax6(Sey-Neu) (Pax6(−)) null allele. Pax6(fl/−) compound heterozygotes had more severe eye abnormalities than Pax6(+/−) heterozygotes, implying that Pax6(fl) differs from the wild-type Pax6(+) allele. Immunohistochemistry showed that the Pax6(fl/−) corneal epithelium was positive for keratin 19 and negative for keratin 12, indicating that it was abnormally differentiated. This Pax6(fl) allele provides a useful addition to the existing Pax6 allelic series and this study demonstrates the utility of using compound heterozygotes with null alleles to unmask cryptic effects of floxed alleles. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11248-016-9962-4) contains supplementary material, which is available to authorized users
Recombinant Bovine/Human Parainfluenza Virus Type 3 (B/HPIV3) Expressing the Respiratory Syncytial Virus (RSV) G and F Proteins Can Be Used To Achieve Simultaneous Mucosal Immunization against RSV and HPIV3
Recombinant bovine/human parainfluenza virus type 3 (rB/HPIV3), a recombinant bovine PIV3 (rBPIV3) in which the F and HN genes were replaced with their HPIV3 counterparts, was used to express the major protective antigens of respiratory syncytial virus (RSV) in order to create a bivalent mucosal vaccine against RSV and HPIV3. The attenuation of rB/HPIV3 is provided by the host range restriction of the BPIV3 backbone in primates. RSV G and F open reading frames (ORFs) were placed under the control of PIV3 transcription signals and inserted individually into the rB/HPIV3 genome in the promoter-proximal position preceding the nucleocapsid protein gene. The recombinant PIV3 expressing the RSV G ORF (rB/HPIV3-G1) was not restricted in its replication in vitro, whereas the virus expressing the RSV F ORF (rB/HPIV3-F1) was eightfold restricted compared to its rB/HPIV3 parent. Both viruses replicated efficiently in the respiratory tract of hamsters, and each induced RSV serum antibody titers similar to those induced by RSV infection and anti-HPIV3 titers similar to those induced by HPIV3 infection. Immunization of hamsters with rB/HPIV3-G1, rB/HPIV3-F1, or a combination of both viruses resulted in a high level of resistance to challenge with RSV or HPIV3 28 days later. These results describe a vaccine strategy that obviates the technical challenges associated with a live attenuated RSV vaccine, providing, against the two leading viral agents of pediatric respiratory tract disease, a bivalent vaccine whose attenuation phenotype is based on the extensive host range sequence differences of BPIV3
Chiropterans Are a Hotspot for Horizontal Transfer of DNA Transposons in Mammalia.
Horizontal transfer of transposable elements (TEs) is an important mechanism contributing to genetic diversity and innovation. Bats (order Chiroptera) have repeatedly been shown to experience horizontal transfer of TEs at what appears to be a high rate compared with other mammals. We investigated the occurrence of horizontally transferred (HT) DNA transposons involving bats. We found over 200 putative HT elements within bats; 16 transposons were shared across distantly related mammalian clades, and 2 other elements were shared with a fish and two lizard species. Our results indicate that bats are a hotspot for horizontal transfer of DNA transposons. These events broadly coincide with the diversification of several bat clades, supporting the hypothesis that DNA transposon invasions have contributed to genetic diversification of bats
Chiropterans are a hotspot for horizontal transfer of DNA transposons in mammalia
Horizontal transfer of transposable elements (TEs) is an important mechanism contributing to genetic diversity and innovation. Bats (order Chiroptera) have repeatedly been shown to experience horizontal transfer of TEs at what appears to be a high rate compared with other mammals. We investigated the occurrence of horizontally transferred (HT) DNA transposons involving bats. We found over 200 putative HT elements within bats; 16 transposons were shared across distantly related mammalian clades, and 2 other elements were shared with a fish and two lizard species. Our results indicate that bats are a hotspot for horizontal transfer of DNA transposons. These events broadly coincide with the diversification of several bat clades, supporting the hypothesis that DNA transposon invasions have contributed to genetic diversification of bats
Chiropterans are a hotspot for horizontal transfer of DNA transposons in mammalia
This project was supported by the National Science Foundation (grant numbers DEB 1838283 and IOS 2032006 to D.M.-S. and Dav.R. and DEB 1838273 and DGE 1633299 to L.D.), National Institutes of Health (grant numbers R01HG002939 and U24HG010136 to J.S., R.H., A.F.A.S., and Je.R.), NHGRI (grant number R01HG008742 to Z.C.), Irish Research Council (grant number IRCLA/ 2017/58 to E.T.), Science Foundation Ireland (grant number 19/FFP/6790 to E.T.), Max Planck Research Group awarded by the Max Planck Gesellschaft to S.V., Human Frontiers Science Program (grant number RGP0058/2016 to S.V.), UK Research and Innovation (grant number MR/T021985/1 to S.V.), and the Swedish Research Council Distinguished Professor Award to K.L.-T.Horizontal transfer of transposable elements (TEs) is an important mechanism contributing to genetic diversity and innovation. Bats (order Chiroptera) have repeatedly been shown to experience horizontal transfer of TEs at what appears to be a high rate compared with other mammals. We investigated the occurrence of horizontally transferred (HT) DNA transposons involving bats. We found over 200 putative HT elements within bats; 16 transposons were shared across distantly related mammalian clades, and 2 other elements were shared with a fish and two lizard species. Our results indicate that bats are a hotspot for horizontal transfer of DNA transposons. These events broadly coincide with the diversification of several bat clades, supporting the hypothesis that DNA transposon invasions have contributed to genetic diversification of bats.Publisher PDFPeer reviewe