8 research outputs found

    Reconnection and Disconnection: Observations of Suprathermal Electron Heat Flux Dropouts

    Get PDF
    Suprathermal electron heat flux dropouts (HFD) serve as a sensitive test of the magnetic topology of the inner heliosphere. Since the heat flux electron strahl always flows away from the Sun, a heat flux dropout should indicate either that the magnetic field line is completely disconnected from the Sun or that the heat flux strahl is scattered into other pitch angles. We present observations of two suprathermal electron heat flux dropout events observed by the Advanced Composition Explorer (ACE) spacecraft which occur simultaneously with impulsive energetic ion events. Since suprathermal electrons encompass the same velocity range as ions with energies of a few MeV/nucleon, the similarities and differences between them as observed at 1 AU probes the sources and transport of these two species. We compare the two events to show the difference between the signatures of a simple disconnection and a more complicated reconnection scenario. Comparing suprathermal electron modulations with energetic ion modulations is a powerful technique for determining the magnetic topology between particle injection at the Sun and observation at 1 AU

    Ulysses Data Analysis: Magnetic Topology of Heliospheric Structures

    No full text
    In this final technical report on research funded by a NASA grant, a project overview is given by way of summaries on nine published papers. Research has included: 1) Using suprathermal electron data to study heliospheric magnetic structures; 2) Analysis of magnetic clouds, coronal mass ejections (CME), and the heliospheric current sheet (HCS); 3) Analysis of the corotating interaction region (CIR) which develop from interactions between solar wind streams of different velocities; 4) Use of Ulysses data in the interpretation of heliospheric events and phenomena

    How Does Large Flaring Activity from the Same Active Region Produce Oppositely Directed Magnetic Clouds?

    Get PDF
    We describe the interplanetary coronal mass ejections (ICMEs) that occurred as a result of a series of solar flares and eruptions from 4 to 8 November 2004. Two ICMEs/magnetic clouds occurring from these events had opposite magnetic orientations. This was despite the fact that the major flares related to these events occurred within the same active region that maintained the same magnetic configuration. The solar events include a wide array of activities: flares, trans-equatorial coronal loop disappearance and reformation, trans-equatorial filament eruption, and coronal hole interaction. The first major ICME/magnetic cloud was predominantly related to the active region 10696 eruption. The second major ICME/magnetic cloud was found to be consistent with the magnetic orientation of an erupting trans-equatorial filament or else a rotation of 160° of a flux rope in the active region. We discuss these possibilities and emphasize the importance of understanding the magnetic evolution of the solar source region before we can begin to predict geoeffective events with any accuracy.Fil: Harra, Louise K.. Mullard Space Science Laboratory; Reino UnidoFil: Crooker, Nancy U.. Boston University; Estados UnidosFil: Mandrini, Cristina Hemilse. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: van Driel Gesztelyi, Lidia. Centre National de la Recherche Scientifique. Observatoire de Paris; FranciaFil: Dasso, Sergio Ricardo. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: Wang, Jingxiu. National Astronomical Observatory; ChinaFil: Elliott, Heather. Southwest Research Institute; Estados UnidosFil: Attrill, Gemma. Mullard Space Science Laboratory; Reino UnidoFil: Jackson, Bernard V.. University of California at San Diego; Estados UnidosFil: Bisi, Mario M.. University of California at San Diego; Estados Unido

    Gene therapy for cross-correction of somatic organs and the CNS in mucopolysaccharidosis II in rodents and non-human primates

    No full text
    Mucopolysaccharidosis II (MPS II) is a rare lysosomal storage disease characterized by deficient activity of iduronate-2-sulfatase (I2S), leading to pathological accumulation of glycosaminoglycans (GAGs) in tissues. We used iduronate-2-sulfatase knockout (Ids KO) mice to investigate if liver-directed recombinant adeno-associated virus vectors (rAAV8-LSP-hIDSco) encoding human I2S (hI2S) could cross-correct I2S deficiency in Ids KO mouse tissues, and we then assessed the translation of mouse data to non-human primates (NHPs). Treated mice showed sustained hepatic hI2S production, accompanied by normalized GAG levels in somatic tissues (including critical tissues such as heart and lung), indicating systemic cross-correction from liver-secreted hI2S. Brain GAG levels in Ids KO mice were lowered but not normalized; higher doses were required to see improvements in brain histology and neurobehavioral testing. rAAV8-LSP-hIDSco administration in NHPs resulted in sustained hepatic hI2S production and therapeutic hI2S levels in cross-corrected somatic tissues but no hI2S exposure in the central nervous system, perhaps owing to lower levels of liver transduction in NHPs than in mice. Overall, we demonstrate the ability of rAAV8-LSP-hIDSco to cross-correct I2S deficiency in mouse somatic tissues and highlight the importance of showing translatability of gene therapy data from rodents to NHPs, which is critical for supporting translation to clinical development
    corecore