24 research outputs found

    Evolutionary dynamics of copy number variation in pig genomes in the context of adaptation and domestication

    Get PDF
    Background Copy number variable regions (CNVRs) can result in drastic phenotypic differences and may therefore be subject to selection during domestication. Studying copy number variation in relation to domestication is highly relevant in pigs because of their very rich natural and domestication history that resulted in many different phenotypes. To investigate the evolutionary dynamic of CNVRs, we applied read depth method on next generation sequence data from 16 individuals, comprising wild boars and domestic pigs from Europe and Asia. Results We identified 3,118 CNVRs with an average size of 13 kilobases comprising a total of 39.2 megabases of the pig genome and 545 overlapping genes. Functional analyses revealed that CNVRs are enriched with genes related to sensory perception, neurological process and response to stimulus, suggesting their contribution to adaptation in the wild and behavioral changes during domestication. Variations of copy number (CN) of antimicrobial related genes suggest an ongoing process of evolution of these genes to combat food-borne pathogens. Likewise, some genes related to the omnivorous lifestyle of pigs, like genes involved in detoxification, were observed to be CN variable. A small portion of CNVRs was unique to domestic pigs and may have been selected during domestication. The majority of CNVRs, however, is shared between wild and domesticated individuals, indicating that domestication had minor effect on the overall diversity of CNVRs. Also, the excess of CNVRs in non-genic regions implies that a major part of these variations is likely to be (nearly) neutral. Comparison between different populations showed that larger populations have more CNVRs, highlighting that CNVRs are, like other genetic variation such as SNPs and microsatellites, reflecting demographic history rather than phenotypic diversity. Conclusion CNVRs in pigs are enriched for genes related to sensory perception, neurological process, and response to stimulus. The majority of CNVRs ascertained in domestic pigs are also variable in wild boars, suggesting that the domestication of the pig did not result in a change in CNVRs in domesticated pigs. The majority of variable regions were found to reflect demographic patterns rather than phenotypic

    Genome sequencing reveals fine scale diversification and reticulation history during speciation in Sus

    Get PDF
    Background Elucidating the process of speciation requires an in-depth understanding of the evolutionary history of the species in question. Studies that rely upon a limited number of genetic loci do not always reveal actual evolutionary history, and often confuse inferences related to phylogeny and speciation. Whole-genome data, however, can overcome this issue by providing a nearly unbiased window into the patterns and processes of speciation. In order to reveal the complexity of the speciation process, we sequenced and analyzed the genomes of 10 wild pigs, representing morphologically or geographically well-defined species and subspecies of the genus Sus from insular and mainland Southeast Asia, and one African common warthog. Results Our data highlight the importance of past cyclical climatic fluctuations in facilitating the dispersal and isolation of populations, thus leading to the diversification of suids in one of the most species-rich regions of the world. Moreover, admixture analyses revealed extensive, intra- and inter-specific gene-flow that explains previous conflicting results obtained from a limited number of loci. We show that these multiple episodes of gene-flow resulted from both natural and human-mediated dispersal. Conclusions Our results demonstrate the importance of past climatic fluctuations and human mediated translocations in driving and complicating the process of speciation in island Southeast Asia. This case study demonstrates that genomics is a powerful tool to decipher the evolutionary history of a genus, and reveals the complexity of the process of speciation

    Genomic analysis reveals selection for Asian genes in European pigs following human-mediated introgression

    Get PDF
    The independent domestication of local wild boar populations in Asia and Europe about 10,000 years ago led to distinct European and Asian pig breeds, each with very different phenotypic characteristics. During the Industrial Revolution, Chinese breeds were imported to Europe to improve commercial traits in European breeds. Here we demonstrate the presence of introgressed Asian haplotypes in European domestic pigs and selection signatures on some loci in these regions, using whole genome sequence data. The introgression signatures are widespread and the Asian haplotypes are rarely fixed. The Asian introgressed haplotypes are associated with regions harbouring genes involved in meat quality, development and fertility. We identify Asian-derived non-synonymous mutations in the AHR gene that associate with increased litter size in multiple European commercial lines. These findings demonstrate that increased fertility was an important breeding goal for early nineteenth century pig farmers, and that Asian variants of genes related to this trait were preferentially selected during the development of modern European pig breeds

    The development and characterization of a 60K SNP chip for chicken

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In livestock species like the chicken, high throughput single nucleotide polymorphism (SNP) genotyping assays are increasingly being used for whole genome association studies and as a tool in breeding (referred to as genomic selection). To be of value in a wide variety of breeds and populations, the success rate of the SNP genotyping assay, the distribution of the SNP across the genome and the minor allele frequencies (MAF) of the SNPs used are extremely important.</p> <p>Results</p> <p>We describe the design of a moderate density (60k) Illumina SNP BeadChip in chicken consisting of SNPs known to be segregating at high to medium minor allele frequencies (MAF) in the two major types of commercial chicken (broilers and layers). This was achieved by the identification of 352,303 SNPs with moderate to high MAF in 2 broilers and 2 layer lines using Illumina sequencing on reduced representation libraries. To further increase the utility of the chip, we also identified SNPs on sequences currently not covered by the chicken genome assembly (Gallus_gallus-2.1). This was achieved by 454 sequencing of the chicken genome at a depth of 12x and the identification of SNPs on 454-derived contigs not covered by the current chicken genome assembly. In total we added 790 SNPs that mapped to 454-derived contigs as well as 421 SNPs with a position on Chr_random of the current assembly. The SNP chip contains 57,636 SNPs of which 54,293 could be genotyped and were shown to be segregating in chicken populations. Our SNP identification procedure appeared to be highly reliable and the overall validation rate of the SNPs on the chip was 94%. We were able to map 328 SNPs derived from the 454 sequence contigs on the chicken genome. The majority of these SNPs map to chromosomes that are already represented in genome build Gallus_gallus-2.1.0. Twenty-eight SNPs were used to construct two new linkage groups most likely representing two micro-chromosomes not covered by the current genome assembly.</p> <p>Conclusions</p> <p>The high success rate of the SNPs on the Illumina chicken 60K Beadchip emphasizes the power of Next generation sequence (NGS) technology for the SNP identification and selection step. The identification of SNPs from sequence contigs derived from NGS sequencing resulted in improved coverage of the chicken genome and the construction of two new linkage groups most likely representing two chicken micro-chromosomes.</p

    Signatures of Selection in the Genomes of Commercial and Non-Commercial Chicken Breeds

    Get PDF
    Identifying genomics regions that are affected by selection is important to understand the domestication and selection history of the domesticated chicken, as well as understanding molecular pathways underlying phenotypic traits and breeding goals. While whole-genome approaches, either high-density SNP chips or massively parallel sequencing, have been successfully applied to identify evidence for selective sweeps in chicken, it has been difficult to distinguish patterns of selection and stochastic and breed specific effects. Here we present a study to identify selective sweeps in a large number of chicken breeds (67 in total) using a high-density (58 K) SNP chip. We analyzed commercial chickens representing all major breeding goals. In addition, we analyzed non-commercial chicken diversity for almost all recognized traditional Dutch breeds and a selection of representative breeds from China. Based on their shared history or breeding goal we in silico grouped the breeds into 14 breed groups. We identified 396 chromosomal regions that show suggestive evidence of selection in at least one breed group with 26 of these regions showing strong evidence of selection. Of these 26 regions, 13 were previously described and 13 yield new candidate genes for performance traits in chicken. Our approach demonstrates the strength of including many different populations with similar, and breed groups with different selection histories to reduce stochastic effects based on single populations

    Genotype data of 480 chickens from 37 traditional Dutch chicken breeds

    No full text
    The folder contains the information for 52,232 markers genotyped in 480 samples using the Illumina Infinium iSelect 60K BeadChip. Markers are uniformly distributed across the Gallus_gallus5.0 chicken genome, comprising 29 autosomes (Gga 1-28 and Gga 33), two sex chromosomes (W,Z), and one linkage group (LGE64)

    Genomic diversity and differentiation of a managed island wild boar population

    No full text
    The evolution of island populations in natural systems is driven by local adaptation and genetic drift. However, evolutionary pathways may be altered by humans in several ways. The wild boar (WB) (Sus scrofa) is an iconic game species occurring in several islands, where it has been strongly managed since prehistoric times. We examined genomic diversity at 49 803 single-nucleotide polymorphisms in 99 Sardinian WBs and compared them with 196 wild specimens from mainland Europe and 105 domestic pigs (DP; 11 breeds). High levels of genetic variation were observed in Sardinia (80.9% of the total number of polymorphisms), which can be only in part associated to recent genetic introgression. Both Principal Component Analysis and Bayesian clustering approach revealed that the Sardinian WB population is highly differentiated from the other European populations (FST=0.126–0.138), and from DP (FST=0.169). Such evidences were mostly unaffected by an uneven sample size, although clustering results in reference populations changed when the number of individuals was standardized. Runs of homozygosity (ROHs) pattern and distribution in Sardinian WB are consistent with a past expansion following a bottleneck (small ROHs) and recent population substructuring (highly homozygous individuals). The observed effect of a non-random selection of Sardinian individuals on diversity, FST and ROH estimates, stressed the importance of sampling design in the study of structured or introgressed populations. Our results support the heterogeneity and distinctiveness of the Sardinian population and prompt further investigations on its origins and conservation status
    corecore