719 research outputs found
Chiral Polymerization in Open Systems From Chiral-Selective Reaction Rates
We investigate the possibility that prebiotic homochirality can be achieved
exclusively through chiral-selective reaction rate parameters without any other
explicit mechanism for chiral bias. Specifically, we examine an open network of
polymerization reactions, where the reaction rates can have chiral-selective
values. The reactions are neither autocatalytic nor do they contain explicit
enantiomeric cross-inhibition terms. We are thus investigating how rare a set
of chiral-selective reaction rates needs to be in order to generate a
reasonable amount of chiral bias. We quantify our results adopting a
statistical approach: varying both the mean value and the rms dispersion of the
relevant reaction rates, we show that moderate to high levels of chiral excess
can be achieved with fairly small chiral bias, below 10%. Considering the
various unknowns related to prebiotic chemical networks in early Earth and the
dependence of reaction rates to environmental properties such as temperature
and pressure variations, we argue that homochirality could have been achieved
from moderate amounts of chiral selectivity in the reaction rates.Comment: 15 pages, 6 figures, accepted for publication in Origins of Life and
Evolution of Biosphere
Physical fitness components associated with performance in a multiple-sprint test.
PURPOSE: The 5-m repeat-sprint test (5-m RST) measures resistance to fatigue after repeated bouts of short-duration, high-intensity activity. This study determined the components of fitness associated with performance in 5-m RSTs. METHODS: Speed (10-m and 40-m sprints), strength (bench press), agility, strength endurance (pull-ups and push-ups), and aerobic power (20-m shuttle-run test) were measured in male provincial- or national-level rugby (n = 110), hockey (n = 59), and soccer (n = 55) players. RESULTS: Subjects with either high (HI) or low (LO) resistance to fatigue in the 5-m RST differed in body mass (76.9 +/- 11.6 kg vs 102.1 +/- 18.9 kg, HI vs LO, respectively, P < .001), agility (14.55 +/- 0.41 seconds vs 15.56 +/- 0.30 seconds, P < .001), bench press (86 +/- 20 kg vs 114 +/- 33 kg, P = .03), pull-ups (13 +/- 4 vs 8 +/- 5, P = .02), push-ups (56 +/- 12 vs 39 +/- 13, P = .002), and 20-m shuttle-run test (20-m SRT; 133 +/- 11 vs 87 +/- 12 shuttles, P < .001). Body mass, strength, and aerobic power were the best predictors of 5-m RST performance: 5-m RST = -1.274(mass) + 0.756(1RM bench press) + 2.053(number of 20-m SRT shuttles) + 549.409 (R2 = .66). CONCLUSIONS: Performance in the 5-m RST is predicted best by a combination of factors including body mass, strength, and aerobic ability, rather than by any single component of fitness
Precision Measurement of the Newtonian Gravitational Constant Using Cold Atoms
About 300 experiments have tried to determine the value of the Newtonian
gravitational constant, G, so far, but large discrepancies in the results have
made it impossible to know its value precisely. The weakness of the
gravitational interaction and the impossibility of shielding the effects of
gravity make it very difficult to measure G while keeping systematic effects
under control. Most previous experiments performed were based on the torsion
pendulum or torsion balance scheme as in the experiment by Cavendish in 1798,
and in all cases macroscopic masses were used. Here we report the precise
determination of G using laser-cooled atoms and quantum interferometry. We
obtain the value G=6.67191(99) x 10^(-11) m^3 kg^(-1) s^(-2) with a relative
uncertainty of 150 parts per million (the combined standard uncertainty is
given in parentheses). Our value differs by 1.5 combined standard deviations
from the current recommended value of the Committee on Data for Science and
Technology. A conceptually different experiment such as ours helps to identify
the systematic errors that have proved elusive in previous experiments, thus
improving the confidence in the value of G. There is no definitive relationship
between G and the other fundamental constants, and there is no theoretical
prediction for its value, against which to test experimental results. Improving
the precision with which we know G has not only a pure metrological interest,
but is also important because of the key role that G has in theories of
gravitation, cosmology, particle physics and astrophysics and in geophysical
models.Comment: 3 figures, 1 tabl
Punctuated Chirality
Most biomolecules occur in mirror, or chiral, images of each other. However,
life is homochiral: proteins contain almost exclusively levorotatory (L) amino
acids, while only dextrorotatory (R) sugars appear in RNA and DNA. The
mechanism behind this fundamental asymmetry of life remains an open problem.
Coupling the spatiotemporal evolution of a general autocatalytic polymerization
reaction network to external environmental effects, we show through a detailed
statistical analysis that high intensity and long duration events may drive
achiral initial conditions towards chirality. We argue that life's
homochirality resulted from sequential chiral symmetry breaking triggered by
environmental events, thus extending the theory of punctuated equilibrium to
the prebiotic realm. Applying our arguments to other potentially life-bearing
planetary platforms, we predict that a statistically representative sampling
will be racemic on average.Comment: 13 pages, 4 color figures. Final version published in Origins of Life
and Evolution of Biospheres. Typos corrected, figures improved, and a few
definitions and word usage clarifie
Reviewing, indicating, and counting books for modern research evaluation systems
In this chapter, we focus on the specialists who have helped to improve the
conditions for book assessments in research evaluation exercises, with
empirically based data and insights supporting their greater integration. Our
review highlights the research carried out by four types of expert communities,
referred to as the monitors, the subject classifiers, the indexers and the
indicator constructionists. Many challenges lie ahead for scholars affiliated
with these communities, particularly the latter three. By acknowledging their
unique, yet interrelated roles, we show where the greatest potential is for
both quantitative and qualitative indicator advancements in book-inclusive
evaluation systems.Comment: Forthcoming in Glanzel, W., Moed, H.F., Schmoch U., Thelwall, M.
(2018). Springer Handbook of Science and Technology Indicators. Springer Some
corrections made in subsection 'Publisher prestige or quality
Chimpanzees (Pan troglodytes) do not develop contingent reciprocity in an experimental task
Chimpanzees provide help to unrelated individuals in a broad range of situations. The pattern of helping within pairs suggests that contingent reciprocity may have been an important mechanism in the evolution of altruism in chimpanzees. However, correlational analyses of the cumulative pattern of interactions over time do not demonstrate that helping is contingent upon previous acts of altruism, as required by the theory of reciprocal altruism. Experimental studies provide a controlled approach to examine the importance of contingency in helping interactions. In this study, we evaluated whether chimpanzees would be more likely to provide food to a social partner from their home group if their partner had previously provided food for them. The chimpanzees manipulated a barpull apparatus in which actors could deliver rewards either to themselves and their partners or only to themselves. Our findings indicate that the chimpanzees’ responses were not consistently influenced by the behavior of their partners in previous rounds. Only one of the 11 dyads that we tested demonstrated positive reciprocity. We conclude that contingent reciprocity does not spontaneously arise in experimental settings, despite the fact that patterns of behavior in the field indicate that individuals cooperate preferentially with reciprocating partners
Recommended from our members
Nonperturbative transverse-momentum-dependent effects in dihadron and direct photon-hadron angular correlations in p+p collisions at s =200 GeV
Dihadron and isolated direct photon-hadron angular correlations are measured in p+p collisions at s=200 GeV. The correlations are sensitive to nonperturbative initial-state and final-state transverse momenta kT and jT in the azimuthal nearly back-to-back region Δφ∼π. To have sensitivity to small transverse momentum scales, nonperturbative momentum widths of pout, the out-of-plane transverse-momentum component perpendicular to the trigger particle, are measured. In this region, the evolution of pout can be studied when several different hard scales are measured. These widths are used to investigate possible effects from transverse-momentum-dependent factorization breaking. When accounting for the longitudinal-momentum fraction of the away-side hadron with respect to the near-side trigger particle, the widths are found to increase with the hard scale; this is qualitatively similar to the observed behavior in Drell-Yan and semi-inclusive deep-inelastic scattering interactions, where factorization is predicted to hold. The momentum widths are also studied as a function of center-of-mass energy by comparing to previous measurements at s=510 GeV. The nonperturbative jet widths also appear to increase with s at a similar xT, which is qualitatively consistent to similar measurements in Drell-Yan interactions. Future detailed global comparisons between measurements of processes where transverse-momentum-dependent factorization is predicted to hold and be broken will provide further insight into the role of color in hadronic interactions
Recommended from our members
Nonperturbative-transverse-momentum broadening in dihadron angular correlations in sNN =200 GeV proton-nucleus collisions
The PHENIX collaboration has measured high-pT dihadron correlations in p+p, p+Al, and p+Au collisions at sNN=200 GeV. The correlations arise from inter- and intrajet correlations and thus have sensitivity to nonperturbative effects in both the initial and final states. The distributions of pout, the transverse-momentum component of the associated hadron perpendicular to the trigger hadron, are sensitive to initial- and final-state transverse momenta. These distributions are measured multidifferentially as a function of xE, the longitudinal momentum fraction of the associated hadron with respect to the trigger hadron. The near-side pout widths, sensitive to fragmentation transverse momentum, show no significant broadening between p+Au, p+Al, and p+p. The away-side nonperturbative pout widths are found to be broadened in p+Au when compared to p+p; however, there is no significant broadening in p+Al compared to p+p collisions. The data also suggest that the away-side pout broadening is a function of Ncoll, the number of binary nucleon-nucleon collisions, in the interaction. The potential implications of these results with regard to initial- and final-state transverse-momentum broadening and energy loss of partons in a nucleus, among other nuclear effects, are discussed
Recommended from our members
Pseudorapidity Dependence of Particle Production and Elliptic Flow in Asymmetric Nuclear Collisions of p+Al, p+Au, d+Au, and ^{3}He+Au at sqrt[s_{NN}]=200  GeV.
Asymmetric nuclear collisions of p+Al, p+Au, d+Au, and ^{3}He+Au at sqrt[s_{NN}]=200  GeV provide an excellent laboratory for understanding particle production, as well as exploring interactions among these particles after their initial creation in the collision. We present measurements of charged hadron production dN_{ch}/dη in all such collision systems over a broad pseudorapidity range and as a function of collision multiplicity. A simple wounded quark model is remarkably successful at describing the full data set. We also measure the elliptic flow v_{2} over a similarly broad pseudorapidity range. These measurements provide key constraints on models of particle emission and their translation into flow
- …