91 research outputs found

    Characterizing the immune microenvironment of malignant peripheral nerve sheath tumor by PD-L1 expression and presence of CD8+ tumor infiltrating lymphocytes.

    Get PDF
    BackgroundMalignant peripheral nerve sheath tumor (MPNST) is an aggressive sarcoma with few treatment options. Tumor immune state has not been characterized in MPNST, and is important in determining response to immune checkpoint blockade. Our aim was to evaluate the expression of programmed death-ligand 1 (PD-L1), programmed cell death protein 1 (PD-1), and presence of CD8+ tumor infiltrating lymphocytes (TILs) in MPNST, and correlate these findings with clinical behavior and outcome.ResultsPD-L1 staining of at least 1% was seen in 0/20 nerves, 2/68 benign lesions and 9/53 MPNST. Two of 68 benign lesions and 7/53 (13%) MPNST had at least 5% PD-L1 staining. CD8 staining of at least 5% was seen in 1/20 (5%) nerves, 45/68 (66%) benign lesions and 30/53 (57%) MPNST. PD-L1 was statistically more prevalent in MPNST than both nerves and benign lesions (p=0.049 and p=0.008, respectively). Expression of PD-1 was absent in all tissue specimens. There was no correlation of PD-L1 or CD8 expression with disease state (primary versus metastatic) or patient survival.MethodsA comprehensive PNST tissue microarray was created from 141 surgical specimens including primary, recurrent, and metastatic MPNST (n=53), neurofibromas (n=57), schwannoma (n=11), and normal nerve (n=20). Cores were stained in triplicate for PD-L1, PD-1, and CD8, and expression compared between tumor types. These data were then examined for survival correlates in 35 patients with primary MPNST.ConclusionsMPNST is characterized by low PD-L1 and absent PD-1 expression with significant CD8+ TIL presence. MPNST immune microenvironment does not correlate with patient outcome

    Early Exposure of Infants to GI Nematodes Induces Th2 Dominant Immune Responses Which Are Unaffected by Periodic Anthelminthic Treatment

    Get PDF
    We have previously shown a reduction in anaemia and wasting malnutrition in infants <3 years old in Pemba Island, Zanzibar, following repeated anthelminthic treatment for the endemic gastrointestinal (GI) nematodes Ascaris lumbricoides, hookworm and Trichuris trichiura. In view of the low intensity of worm infections in this age group, this was unexpected, and it was proposed that immune responses to the worms rather than their direct effects may play a significant role in morbidity in infants and that anthelminthic treatment may alleviate such effects. Therefore, the primary aims of this study were to characterise the immune response to initial/early GI nematode infections in infants and the effects of anthelminthic treatment on such immune responses. The frequency and levels of Th1/Th2 cytokines (IL-5, IL-13, IFN-γ and IL-10) induced by the worms were evaluated in 666 infants aged 6–24 months using the Whole Blood Assay. Ascaris and hookworm antigens induced predominantly Th2 cytokine responses, and levels of IL-5 and IL-13 were significantly correlated. The frequencies and levels of responses were higher for both Ascaris positive and hookworm positive infants compared with worm negative individuals, but very few infants made Trichuris-specific cytokine responses. Infants treated every 3 months with mebendazole showed a significantly lower prevalence of infection compared with placebo-treated controls at one year following baseline. At follow-up, cytokine responses to Ascaris and hookworm antigens, which remained Th2 biased, were increased compared with baseline but were not significantly affected by treatment. However, blood eosinophil levels, which were elevated in worm-infected children, were significantly lower in treated children. Thus the effect of deworming in this age group on anaemia and wasting malnutrition, which were replicated in this study, could not be explained by modification of cytokine responses but may be related to eosinophil function

    Systems Biology Approach Predicts Antibody Signature Associated with Brucella melitensis Infection in Humans

    Get PDF
    A complete understanding of the factors that determine selection of antigens recognized by the humoral immune response following infectious agent challenge is lacking. Here we illustrate a systems biology approach to identify the antibody signature associated with Brucella melitensis (Bm) infection in humans and predict proteomic features of serodiagnostic antigens. By taking advantage of a full proteome microarray expressing previously cloned 1406 and newly cloned 1640 Bm genes, we were able to identify 122 immunodominant antigens and 33 serodiagnostic antigens. The reactive antigens were then classified according to annotated functional features (COGs), computationally predicted features (e.g., subcellular localization, physical properties), and protein expression estimated by mass spectrometry (MS). Enrichment analyses indicated that membrane association and secretion were significant enriching features of the reactive antigens, as were proteins predicted to have a signal peptide, a single transmembrane domain, and outer membrane or periplasmic location. These features accounted for 67% of the serodiagnostic antigens. An overlay of the seroreactive antigen set with proteomic data sets generated by MS identified an additional 24%, suggesting that protein expression in bacteria is an additional determinant in the induction of Brucella-specific antibodies. This analysis indicates that one-third of the proteome contains enriching features that account for 91% of the antigens recognized, and after B. melitensis infection the immune system develops significant antibody titers against 10% of the proteins with these enriching features. This systems biology approach provides an empirical basis for understanding the breadth and specificity of the immune response to B. melitensis and a new framework for comparing the humoral responses against other microorganisms

    A Phase 1 Trial of MSP2-C1, a Blood-Stage Malaria Vaccine Containing 2 Isoforms of MSP2 Formulated with Montanide® ISA 720

    Get PDF
    Background: In a previous Phase 1/2b malaria vaccine trial testing the 3D7 isoform of the malaria vaccine candidate Merozoite surface protein 2 (MSP2), parasite densities in children were reduced by 62%. However, breakthrough parasitemias were disproportionately of the alternate dimorphic form of MSP2, the FC27 genotype. We therefore undertook a dose-escalating, double-blinded, placebo-controlled Phase 1 trial in healthy, malaria-naïve adults of MSP2-C1, a vaccine containing recombinant forms of the two families of msp2 alleles, 3D7 and FC27 (EcMSP2-3D7 and EcMSP2-FC27), formulated in equal amounts with Montanide® ISA 720 as a water-in-oil emulsion. Methodology/Principal Findings: The trial was designed to include three dose cohorts (10, 40, and 80 μg), each with twelve subjects receiving the vaccine and three control subjects receiving Montanide® ISA 720 adjuvant emulsion alone, in a schedule of three doses at 12-week intervals. Due to unexpected local reactogenicity and concern regarding vaccine stability, the trial was terminated after the second immunisation of the cohort receiving the 40 μg dose; no subjects received the 80 μg dose. Immunization induced significant IgG responses to both isoforms of MSP2 in the 10 μg and 40 μg dose cohorts, with antibody levels by ELISA higher in the 40 μg cohort. Vaccine-induced antibodies recognised native protein by Western blots of parasite protein extracts and by immunofluorescence microscopy. Although the induced anti-MSP2 antibodies did not directly inhibit parasite growth in vitro, IgG from the majority of individuals tested caused significant antibody-dependent cellular inhibition (ADCI) of parasite growth. Conclusions/Significance: As the majority of subjects vaccinated with MSP2-C1 developed an antibody responses to both forms of MSP2, and that these antibodies mediated ADCI provide further support for MSP2 as a malaria vaccine candidate. However, in view of the reactogenicity of this formulation, further clinical development of MSP2-C1 will require formulation of MSP2 in an alternative adjuvant. Trial Registration: Australian New Zealand Clinical Trials Registry 12607000552482

    The Synergistic Effect of Concomitant Schistosomiasis, Hookworm, and Trichuris Infections on Children's Anemia Burden

    Get PDF
    Polyparasitic infections have been recognized as the norm in many tropical developing countries, but the significance of this phenomenon for helminth-associated morbidities is largely unexplored. Earlier studies have suggested that multi-species, low-intensity parasitic infections were associated with higher odds of anemia among school-age children relative to their uninfected counterparts or those with one low-intensity infection. However, specific studies of the nature of interactions between helminth species in the mediation of helminth-associated morbidities are lacking. This study quantifies the extent to which polyparasitic infections have more than the sum of adverse effects associated with individual infections in the context of childhood anemia. This study found that the risk of anemia is amplified beyond the sum of risks for individual infections in children simultaneously exposed to 1) hookworm and schistosomiasis, and 2) hookworm and trichuris, and suggests that combined treatment for some geohelminth species and schistosomiasis could yield greater than additive benefits for the reduction of childhood anemia in helminth-endemic areas. However, more studies to understand the full range of interactions between parasitic species in their joint effects on helminth-associated morbidities will be necessary to better predict the impact of any future public health intervention

    Local Control of Soft Tissue and Bone Sarcomas

    No full text

    Cancer-Associated B Cells in Sarcoma

    No full text
    Despite being one of the first types of cancers studied that hinted at a major role of the immune system in pro- and anti-tumor biology, little is known about the immune microenvironment in sarcoma. Few types of sarcoma have shown major responses to immunotherapy, and its rarity and heterogeneity makes it challenging to study. With limited systemic treatment options, further understanding of the underlying mechanisms in sarcoma immunity may prove crucial in advancing sarcoma care. While great strides have been made in the field of immunotherapy over the last few decades, most of these efforts have focused on harnessing the T cell response, with little attention on the role B cells may play in the tumor microenvironment. A growing body of evidence suggests that B cells have both pro- and anti-tumoral effects in a large variety of cancers, and in the age of bioinformatics and multi-omic analysis, the complexity of the humoral response is just being appreciated. This review explores what is currently known about the role of B cells in sarcoma, including understanding the various B cell populations associated with sarcoma, the organization of intra-tumoral B cells in tertiary lymphoid structures, recent trials in immunotherapy in sarcoma, intra-tumoral immunoglobulin, the pro-tumor effects of B cells, and exciting future areas for research
    corecore