840 research outputs found

    Lifetimes of Stark-shifted image states

    Full text link
    The inelastic lifetimes of electrons in image-potential states at Cu(100) that are Stark-shifted by the electrostatic tip-sample interaction in the scanning tunneling microscope are calculated using the many-body GW approximation. The results demonstrate that in typical tunneling conditions the image state lifetimes are significantly reduced from their field-free values. The Stark-shift to higher energies increases the number of inelastic scattering channels that are available for decay, with field-induced changes in the image state wave function increasing the efficiency of the inelastic scattering through greater overlap with final state wave functions.Comment: 10 pages, 4 figure

    Simulating the nanomechanical response of cyclooctatetraene molecules on a graphene device

    Get PDF
    We investigate the atomic and electronic structures of cyclooctatetraene (COT) molecules on graphene and analyze their dependence on external gate voltage using first-principles calculations. The external gate voltage is simulated by adding or removing electrons using density functional theory (DFT) calculations. This allows us to investigate how changes in carrier density modify the molecular shape, orientation, adsorption site, diffusion barrier, and diffusion path. For increased hole doping COT molecules gradually change their shape to a more flattened conformation and the distance between the molecules and graphene increases while the diffusion barrier drastically decreases. For increased electron doping an abrupt transition to a planar conformation at a carrier density of -8×\times1013^{13} e/cm2^2 is observed. These calculations imply that the shape and mobility of adsorbed COT molecules can be controlled by externally gating graphene devices

    Mirage phenomena in superconducting quantum corrals

    Full text link
    We investigate the local density of states and the order parameter structure inside an elliptic quantum corral on surfaces of isotropic and anisotropic superconductors. The Bogoliubov-de Gennes equations are solved in the presence of non-magnetic and magnetic impurities. We observe and discuss a variety of mirage and anti-mirage phenomena, which specifically reflect the nature of the superconducting pairing state.Comment: 8 pages, 8 figure

    Disorder induced local density of states oscillations on narrow Ag(111) terraces

    Full text link
    The local density of states of Ag(111) has been probed in detail on disordered terraces of varying width by dI/dV-mapping with a scanning tunneling microscope at low temperatures. Apparent shifts of the bottom of the surface-state band edge from terrace induced confinement are observed. Disordered terraces show interesting contrast reversals in the dI/dV maps as a function of tip-sample voltage polarity with details that depend on the average width of the terrace and the particular edge profile. In contrast to perfect terraces with straight edges, standing wave patterns are observed parallel to the step edges, i.e. in the non-confined direction. Scattering calculations based on the Ag(111) surface states reproduce these spatial oscillations and all the qualitative features of the standing wave patterns, including the polarity-dependent contrast reversals.Comment: 19 pages, 12 figure

    Ab initio study of mirages and magnetic interactions in quantum corrals

    Full text link
    The state of the art ab initio calculations of quantum mirages,the spin-polarization of surface-state electrons and the exchange interaction between magnetic adatoms in Cu and Co corrals on Cu(111) are presented. We find that the spin-polarization of the surface-state electrons caused by magnetic adatoms can be projected to a remote location and can be strongly enhanced in corrals compared to an open surface.Our studies give a clear evidence that quantum corrals could permit to tailor the exchange interaction between magnetic adatoms at large separations. The spin-polarization of surface-state electrons at the empty focus in the Co corral used in the experimental setup of Manoharan et al., (Nature 403, 512 (2000)) is revealed.Comment: Submitted to Physical Review Letter

    Magnetic properties of Quantum Corrals from first principles calculations

    Full text link
    We present calculations for electronic and magnetic properties of surface states confined by a circular quantum corral built of magnetic adatoms (Fe) on a Cu(111) surface. We show the oscillations of charge and magnetization densities within the corral and the possibility of the appearance of spin--polarized states. In order to classify the peaks in the calculated density of states with orbital quantum numbers we analyzed the problem in terms of a simple quantum mechanical circular well model. This model is also used to estimate the behaviour of the magnetization and energy with respect to the radius of the circular corral. The calculations are performed fully relativistically using the embedding technique within the Korringa-Kohn-Rostoker method.Comment: 14 pages, 9 figures, submitted to J. Phys. Cond. Matt. special issue on 'Theory and Simulation of Nanostructures
    corecore