287 research outputs found

    The Biophysical Toolbox: a Biophysical Modelling Tool Developed within the IWRAM-DSS

    No full text
    With rapid intensification of agricultural catchments in northern Thailand a suite of environmental issues have surfaced. The Integrated Water Resources Assessment and Management (IWRAM) project was instigated in response to these issues. The project developed a Decision Support System for the exploration of biophysical and socio-economic impacts of water resources use option. The IWRAM-DSS is comprised of a 'Biophysical Toolbox' that can be implemented alone or an 'Integrated Toolbox' that links socioeconomic models with the biophysical toolbox to explore economic trade-offs and impacts of various scenarios. The Biophysical Toolbox is comprised of three modules - the CATCHCROP crop model, a hydrologic module based upon the IHACRES rainfall-runoff model, and a Universal Soil Loss Equation (USLE) approach modified to suit conditions in northern Thailand. This working paper describes and implements the Fortran 77 version of the Biophysical Toolkit developed jointly by Dr. Barry Croke and Wendy Merritt. A Java version of the model has been coded by Dr. Claude Dietrich and Nick Ardlie, however this version has not been linked with the economic model as part of the fully integrated IWRAM-DSS

    Filling minimality of Finslerian 2-discs

    Full text link
    We prove that every Riemannian metric on the 2-disc such that all its geodesics are minimal, is a minimal filling of its boundary (within the class of fillings homeomorphic to the disc). This improves an earlier result of the author by removing the assumption that the boundary is convex. More generally, we prove this result for Finsler metrics with area defined as the two-dimensional Holmes-Thompson volume. This implies a generalization of Pu's isosystolic inequality to Finsler metrics, both for Holmes-Thompson and Busemann definitions of Finsler area.Comment: 16 pages, v2: improved introduction and formattin

    Maximum Confidence Quantum Measurements

    Get PDF
    We consider the problem of discriminating between states of a specified set with maximum confidence. For a set of linearly independent states unambiguous discrimination is possible if we allow for the possibility of an inconclusive result. For linearly dependent sets an analogous measurement is one which allows us to be as confident as possible that when a given state is identified on the basis of the measurement result, it is indeed the correct state.Comment: 4 pages, 2 figure

    On the conditions for discrimination between quantum states with minimum error

    Full text link
    We provide a simple proof for the necessity of conditions for discriminating with minimum error between a known set of quantum states.Comment: 4 page

    Ellipsometric study of Si(0.5)Ge(0.5)/Si strained-layer superlattices

    Get PDF
    An ellipsometric study of two Si(0.5)Ge(0.5)/Si strained-layer super lattices grown by MBE at low temperature (500 C) is presented, and results are compared with x ray diffraction (XRD) estimates. Excellent agreement is obtained between target values, XRD, and ellipsometry when one of two available Si(x)Ge(1-x) databases is used. It is shown that ellipsometry can be used to nondestructively determine the number of superlattice periods, layer thicknesses, Si(x)Ge(1-x) composition, and oxide thickness without resorting to additional sources of information. It was also noted that we do not observe any strain effect on the E(sub 1) critical point

    Spectral isolation of naturally reductive metrics on simple Lie groups

    Full text link
    We show that within the class of left-invariant naturally reductive metrics MNat(G)\mathcal{M}_{\operatorname{Nat}}(G) on a compact simple Lie group GG, every metric is spectrally isolated. We also observe that any collection of isospectral compact symmetric spaces is finite; this follows from a somewhat stronger statement involving only a finite part of the spectrum.Comment: 19 pages, new title and abstract, revised introduction, new result demonstrating that any collection of isospectral compact symmetric spaces must be finite, to appear Math Z. (published online Dec. 2009

    MULTIPLE-SOURCE URBAN ATMOSPHERIC DISPERSION MODEL.

    Full text link

    Quantum tunneling Sb-heterostructure millimeter-wave diodes

    Get PDF
    We have developed a new zero bias millimeter wave diode based on quantum tunneling in an InAs/AlSb/GaSb nanostructure. It is ideal for square law radiometry and passive millimeter wave imaging. Excellent sensitivity has been demonstrated at present up to 110 GHz, with higher bandwidth predicted for smaller area diodes
    corecore