2,558 research outputs found
Interaction between Faraday rotation and Cotton-Mouton effects in polarimetry modeling for NSTX
The evolution of electromagnetic wave polarization is modeled for propagation
in the major radial direction in the National Spherical Torus Experiment (NSTX)
with retroreflection from the center stack of the vacuum vessel. This modeling
illustrates that the Cotton-Mouton effect-elliptization due to the magnetic
field perpendicular to the propagation direction-is shown to be strongly
weighted to the high-field region of the plasma. An interaction between the
Faraday rotation and Cotton-Mouton effects is also clearly identified.
Elliptization occurs when the wave polarization direction is neither parallel
nor perpendicular to the local transverse magnetic field. Since Faraday
rotation modifies the polarization direction during propagation, it must also
affect the resultant elliptization. The Cotton-Mouton effect also intrinsically
results in rotation of the polarization direction, but this effect is less
significant in the plasma conditions modeled. The interaction increases at
longer wavelength, and complicates interpretation of polarimetry measurements.Comment: Contributed paper published as part of the Proceedings of the 18th
Topical Conference on High-Temperature Plasma Diagnostics, Wildwood, New
Jersey, May, 201
Radio and gamma-ray constraints on dark matter annihilation in the Galactic center
We determine upper limits on the dark matter (DM) self-annihilation cross
section for scenarios in which annihilation leads to the production of
electron--positron pairs. In the Galactic centre (GC), relativistic electrons
and positrons produce a radio flux via synchroton emission, and a gamma ray
flux via bremsstrahlung and inverse Compton scattering. On the basis of
archival, interferometric and single-dish radio data, we have determined the
radio spectrum of an elliptical region around the Galactic centre of extent 3
degrees semi-major axis (along the Galactic plane) and 1 degree semi-minor axis
and a second, rectangular region, also centered on the GC, of extent 1.6
degrees x 0.6 degrees. The radio spectra of both regions are non-thermal over
the range of frequencies for which we have data: 74 MHz -- 10 GHz. We also
consider gamma-ray data covering the same region from the EGRET instrument
(about GeV) and from HESS (around TeV). We show how the combination of these
data can be used to place robust constraints on DM annihilation scenarios, in a
way which is relatively insensitive to assumptions about the magnetic field
amplitude in this region. Our results are approximately an order of magnitude
more constraining than existing Galactic centre radio and gamma ray limits. For
a DM mass of m_\chi =10 GeV, and an NFW profile, we find that the
velocity-averaged cross-section must be less than a few times 10^-25 cm^3 s^-1.Comment: 14 pages, 9 figures. Version accepted for publication in PRD.
Reference section updated/extended
New Pseudo-Phase Structure for -Pu
In this paper we propose a new pseudo-phase crystal structure, based on an
orthorhombic distortion of the diamond structure, for the ground-state
-phase of plutonium. Electronic-structure calculations in the
generalized-gradient approximation give approximately the same total energy for
the two structures. Interestingly, our new pseudo-phase structure is the same
as the Pu -phase structure except with very different b/a and c/a
ratios. We show how the contraction relative to the phase, principally
in the direction, leads to an -like structure in the [0,1,1] plane.
This is an important link between two complex structures of plutonium and opens
new possibilities for exploring the very rich phase diagram of Pu through
theoretical calculations
Microrheology, stress fluctuations and active behavior of living cells
We report the first measurements of the intrinsic strain fluctuations of
living cells using a recently-developed tracer correlation technique along with
a theoretical framework for interpreting such data in heterogeneous media with
non-thermal driving. The fluctuations' spatial and temporal correlations
indicate that the cytoskeleton can be treated as a course-grained continuum
with power-law rheology, driven by a spatially random stress tensor field.
Combined with recent cell rheology results, our data imply that intracellular
stress fluctuations have a nearly power spectrum, as expected for
a continuum with a slowly evolving internal prestress.Comment: 4 pages, 2 figures, to appear in Phys. Rev. Let
Like-charge attraction through hydrodynamic interaction
We demonstrate that the attractive interaction measured between like-charged
colloidal spheres near a wall can be accounted for by a nonequilibrium
hydrodynamic effect. We present both analytical results and Brownian dynamics
simulations which quantitatively capture the one-wall experiments of Larsen and
Grier (Nature 385, p. 230, 1997).Comment: 10 pages, 4 figure
Faraday Tomography of the North Polar Spur: Constraints on the distance to the Spur and on the Magnetic Field of the Galaxy
We present radio continuum and polarization images of the North Polar Spur
(NPS) from the Global Magneto-Ionic Medium Survey (GMIMS) conducted with the
Dominion Radio Astrophysical Observatory 26-m Telescope. We fit polarization
angle versus wavelength squared over 2048 frequency channels from 1280 to 1750
MHz to obtain a Faraday Rotation Measure (RM) map of the NPS. Combining this RM
map with a published Faraday depth map of the entire Galaxy in this direction,
we derive the Faraday depth introduced by the NPS and the Galactic interstellar
medium (ISM) in front of and behind the NPS. The Faraday depth contributed by
the NPS is close to zero, indicating that the NPS is an emitting only feature.
The Faraday depth caused by the ISM in front of the NPS is consistent with zero
at b>50 degree, implying that this part of the NPS is local at a distance of
approximately several hundred parsecs. The Faraday depth contributed by the ISM
behind the NPS gradually increases with Galactic latitude up to b=44 degree,
and decreases at higher Galactic latitudes. This implies that either the part
of the NPS at b<44 degree is distant or the NPS is local but there is a sign
change of the large-scale magnetic field. If the NPS is local, there is then no
evidence for a large-scale anti-symmetry pattern in the Faraday depth of the
Milky Way. The Faraday depth introduced by the ISM behind the NPS at latitudes
b>50 degree can be explained by including a coherent vertical magnetic field.Comment: 9 pages, 8 figures, accepted for publication in ApJ. Some figures
have been degraded to reduce sizes, for a high resolution version, see
http://physics.usyd.edu.au/~xhsun/ms_nps.pd
Hard Spheres in Vesicles: Curvature-Induced Forces and Particle-Induced Curvature
We explore the interplay of membrane curvature and nonspecific binding due to
excluded-volume effects among colloidal particles inside lipid bilayer
vesicles. We trapped submicron spheres of two different sizes inside a
pear-shaped, multilamellar vesicle and found the larger spheres to be pinned to
the vesicle's surface and pushed in the direction of increasing curvature. A
simple model predicts that hard spheres can induce shape changes in flexible
vesicles. The results demonstrate an important relationship between the shape
of a vesicle or pore and the arrangement of particles within it.Comment: LaTeX with epsfig; ps available at
http://dept.physics.upenn.edu/~nelson/index.shtml Phys Rev Lett in press
(1997
- …