11 research outputs found

    Chapter 8- Outlining the Goals, Objectives, and Outcomes of the Mentoring Program

    Get PDF
    Even when institutions already have a mentoring culture, a mentoring program is not an end in itself. Rather, mentoring is a tool to achieve a broader outcome, be it at the institutional, department, or individual level. While these outcomes may vary, it is critical that a mentoring program is carefully crafted in service of the outcomes. It must meet the needs and objectives of not only the mentees and mentors but also the institutions and the field. In this chapter, authors Lisa Fain and Jamie Crites will use a case study to discuss how to craft goals, and objectives that are aligned to meet desired outcomes. We will explain how consideration of seven design elements will determine and reach the goals, objectives, and outcomes of programs. Lastly, utilizing a logic model we will guide you through how to employ this framework to appeal to multiple key stakeholders at your institutions

    A Foreground Masking Strategy for [CII] Intensity Mapping Experiments Using Galaxies Selected by Stellar Mass and Redshift

    Get PDF
    Intensity mapping provides a unique means to probe the epoch of reionization (EoR), when the neutral intergalactic medium was ionized by the energetic photons emitted from the first galaxies. The [CII] 158μ\mum fine-structure line is typically one of the brightest emission lines of star-forming galaxies and thus a promising tracer of the global EoR star-formation activity. However, [CII] intensity maps at 6z86 \lesssim z \lesssim 8 are contaminated by interloping CO rotational line emission (3Jupp63 \leq J_{\rm upp} \leq 6) from lower-redshift galaxies. Here we present a strategy to remove the foreground contamination in upcoming [CII] intensity mapping experiments, guided by a model of CO emission from foreground galaxies. The model is based on empirical measurements of the mean and scatter of the total infrared luminosities of galaxies at z108Mz 10^{8}\,\rm M_{\rm \odot} selected in KK-band from the COSMOS/UltraVISTA survey, which can be converted to CO line strengths. For a mock field of the Tomographic Ionized-carbon Mapping Experiment (TIME), we find that masking out the "voxels" (spectral-spatial elements) containing foreground galaxies identified using an optimized CO flux threshold results in a zz-dependent criterion mKAB22m^{\rm AB}_{\rm K} \lesssim 22 (or M109MM_{*} \gtrsim 10^{9} \,\rm M_{\rm \odot}) at z<1z < 1 and makes a [CII]/COtot_{\rm tot} power ratio of 10\gtrsim 10 at k=0.1k=0.1 hh/Mpc achievable, at the cost of a moderate 8%\lesssim 8\% loss of total survey volume.Comment: 14 figures, 4 tables, re-submitted to ApJ after addressing reviewer's comments. Comments welcom

    Probing Cosmic Reionization and Molecular Gas Growth with TIME

    Get PDF
    Line intensity mapping (LIM) provides a unique and powerful means to probe cosmic structures by measuring the aggregate line emission from all galaxies across redshift. The method is complementary to conventional galaxy redshift surveys that are object-based and demand exquisite point-source sensitivity. The Tomographic Ionized-carbon Mapping Experiment (TIME) will measure the star formation rate (SFR) during cosmic reionization by observing the redshifted [CII] 158μ\mum line (6z96 \lesssim z \lesssim 9) in the LIM regime. TIME will simultaneously study the abundance of molecular gas during the era of peak star formation by observing the rotational CO lines emitted by galaxies at 0.5z20.5 \lesssim z \lesssim 2. We present the modeling framework that predicts the constraining power of TIME on a number of observables, including the line luminosity function, and the auto- and cross-correlation power spectra, including synergies with external galaxy tracers. Based on an optimized survey strategy and fiducial model parameters informed by existing observations, we forecast constraints on physical quantities relevant to reionization and galaxy evolution, such as the escape fraction of ionizing photons during reionization, the faint-end slope of the galaxy luminosity function at high redshift, and the cosmic molecular gas density at cosmic noon. We discuss how these constraints can advance our understanding of cosmological galaxy evolution at the two distinct cosmic epochs for TIME, starting in 2021, and how they could be improved in future phases of the experiment.Comment: 30 pages, 18 figures, accepted for publication in Ap

    Making Connections: A Handbook for Effective Formal Mentoring Programs in Academia

    Get PDF
    This book, Making Connections: A Handbook for Effective Formal Mentoring Programs in Academia, makes a unique and needed contribution to the mentoring field as it focuses solely on mentoring in academia. This handbook is a collaborative institutional effort between Utah State University’s (USU) Empowering Teaching Open Access Book Series and the Mentoring Institute at the University of New Mexico (UNM). This book is available through (a) an e-book through Pressbooks, (b) a downloadable PDF version on USU’s Open Access Book Series website), and (c) a print version available for purchase on the USU Empower Teaching Open Access page, and on Amazon

    Communication of Visual and Auditory Information and the Coordination of Team Task Performance

    No full text
    Due to lack of visual or auditory perceptual information, many tasks require interpersonal coordination and teaming. Dyadic verbal and/or auditory communication typically results in the two people becoming informationally coupled. This experiment examined coupling by using a two-person remote navigation task where one participant blindly drove a remote-controlled car while another participant provided auditory, visual, or a combination of both cues (bimodal). Under these conditions, we evaluated performance using easy, moderate, and hard task difficulties. We predicted that the visual condition would have higher performance measures overall, and the bimodal condition would have higher performance as difficulty increased. Results indicated that visual coupling performs better overall compared to auditory coupling and that bimodal coupling showed increased performance as task difficulty went from moderate to hard. When auditory coupling occurs, the frequency at which teams communicate affects performance— the faster teams spoke, the better they performed, even with visual communication available

    Protean career development and Ignatian spirituality: Evidence for age-old practice

    No full text
    Given its promise for protean career development, we conducted a randomized clinical trial to see if Ignatian spirituality practices can improve career discernment. Results suggest that the use of Ignatian spirituality in career development significantly increased scores for calling and purpose. Implications can inform discernment and career development interventions

    A status update on TIME: a mm-wavelength spectrometer designed to probe the Epoch of Reionization

    No full text
    TIME is an instrument being developed to study emission from faint objects in our universe using line intensity mapping (LIM) to understand the universe over cosmic time. The TIME instrument is a mm-wavelength grating spectrometer with Transition Edge Sensor (TES) bolometers measuring in the frequency range of 200-300 GHz with 60 spectral pixels and 16 spatial pixels. TIME will measure [CII] emission from redshift 5 to 9 to probe the evolution of our universe during the epoch of reionization. TIME will also measure low-redshift CO fluctuations and map molecular gas in the epoch of peak cosmic star formation from redshift 0.5 to 2. This instrument and the emerging technique of LIM will provide complementary measurements to typical galaxy surveys and illuminate the history of our universe. TIME was recently installed on the 12m ALMA prototype antenna operated by the Arizona Radio Observatory on Kitt Peak for an engineering test and will return for science observations in 2020

    Tomography of the Cosmic Dawn and Reionization Eras with Multiple Tracers

    Get PDF
    Astro2020 Science White Paper; 5 pages, 1 figureThe Cosmic Dawn and Reionization epochs remain a fundamental but challenging frontier of astrophysics and cosmology. We advocate a large-scale, multi-tracer approach to develop a comprehensive understanding of the physics that led to the formation and evolution of the first stars and galaxies. We highlight the line intensity mapping technique to trace the multi-phase reionization topology on large scales, and measure reionization history in detail. Besides 21cm, we advocate for Lya tomography mapping during the epoch of Wouthuysen-Field coupling as an additional probe of the cosmic dawn era
    corecore