12 research outputs found

    Origin and domestication of native Amazonian crops

    Get PDF
    Molecular analyses are providing new elements to decipher the origin, domestication and dispersal of native Amazonian crops in an expanding archaeological context. Solid molecular data are available for manioc (Manihot esculenta), cacao (Theobroma cacao), pineapple (Ananas comosus), peach palm (Bactris gasipaes) and guaraná (Paullinia cupana), while hot peppers (Capsicum spp.), inga (Inga edulis), Brazil nut (Bertholletia excelsa) and cupuassu (Theobroma grandiflorum) are being studied. Emergent patterns include the relationships among domestication, antiquity (terminal Pleistocene to early Holocene), origin in the periphery, ample pre-Columbian dispersal and clear phylogeographic population structure for manioc, pineapple, peach palm and, perhaps, Capsicum peppers. Cacao represents the special case of an Amazonian species possibly brought into domestication in Mesoamerica, but close scrutiny of molecular data suggests that it may also have some incipiently domesticated populations in Amazonia. Another pattern includes the relationships among species with incipiently domesticated populations or very recently domesticated populations, rapid pre- or post-conquest dispersal and lack of phylogeographic population structure, e.g., Brazil nut, cupuassu and guaraná. These patterns contrast the peripheral origin of most species with domesticated populations with the subsequent concentration of their genetic resources in the center of the basin, along the major white water rivers where high pre-conquest population densities developed. Additional molecular genetic analyses on these and other species will allow better examination of these processes and will enable us to relate them to other historical ecological patterns in Amazonia. © 2010 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland

    Crop domestication in the upper Madeira River basin

    Get PDF
    Most native Amazonian crops were domesticated in the periphery of the basin. The upper Madeira River basin is an important part of this periphery where several important crops were domesticated and others are suspected to have been domesticated or arrived early. Some of these crops have been reasonably well studied, such as manioc, peanut, peach palm, coca and tobacco, while others are not as well known, such as the hot peppers Capsicum baccatum and C. frutescens, and still others need confirmation, such as cocoyam and annatto. We review the information available for manioc, peach palm, Capsicum, peanut, annatto and cocoyam. The state-of-the-art for Capsicum frutescens, annatto and cocoyam is insufficient to conclude definitively that they were domesticated in the upper Madeira, while all the others have at least one of their origins or centers of diversity in the upper Madeira

    Variabilidade genética no germoplasma de pupunha analisada com marcadores RAPD

    No full text
    Peach palm is a native Amazonian fruit species with broad genetic diversity in its wild and domesticated populations. This study completed the molecular characterization and genetic analysis of the accessions in the Peach Palm genebank, Brazil, using RAPD markers. Eight primers generated 132 markers, of which 128 were polymorphic. Average heterozigosity was 0.35, with 95.5% polymorphism. The genetic variability within the landraces (HS) was 0.32, while genetic divergence (GST) was 0.09 among the four well-represented landraces. The average gene flow was 5.0, with high gene flow between the Solimões and Pampa Hermosa (Nm=10.07), and between the Putumayo and Solimões (Nm=10.73) landraces, all western landraces. The dendrograms of the Nei's and Rogers' genetic distances of the well-represented landraces presented similar groupings to previous analyses, with the Solimões, Putumayo and Pampa Hermosa landraces grouped together in western Amazonia, and distant from the Pará landrace in central and eastern Amazonia

    Peach palm core collection in Brazilian Amazonia

    No full text
    The Peach palm Active Germplasm Bank has abundant genetic diversity in its holdings. Because it is a live collection, maintenance, characterization and evaluation are expensive, restricting its use. One way to promote more efficient use is to create a Core Collection, a set of accessions with at least 70% of the genetic diversity of the full collection with minimal repetition. The available geographic, molecular marker (RAPD) and morphometric information was systematized and the populations were stratified into wild and domesticated. The Core Collection consists of 10% of the entire collection: 31 accessions of landraces, 5 accessions of non-designated populations and 4 accessions of wild populations. The Core has 92% of the molecular polymorphism and 95% of the heterozygosity of the full collection, with minimal divergence between them by molecular variance. The Core is already receiving priority maintenance, which will contribute to long term conservation

    Uma coleção nuclear de pupunha na Amazônia Brasileira

    No full text
    The Peach palm Active Germplasm Bank has abundant genetic diversity in its holdings. Because it is a live collection, maintenance, characterization and evaluation are expensive, restricting its use. One way to promote more efficient use is to create a Core Collection, a set of accessions with at least 70% of the genetic diversity of the full collection with minimal repetition. The available geographic, molecular marker (RAPD) and morphometric information was systematized and the populations were stratified into wild and domesticated. The Core Collection consists of 10% of the entire collection: 31 accessions of landraces, 5 accessions of non-designated populations and 4 accessions of wild populations. The Core has 92% of the molecular polymorphism and 95% of the heterozygosity of the full collection, with minimal divergence between them by molecular variance. The Core is already receiving priority maintenance, which will contribute to long term conservation. © 2015, Crop Breeding and Applied Biotechnology. All rights reserved
    corecore