31 research outputs found

    Cost and value of multidisciplinary fixed-point ocean observatories

    Get PDF
    Sustained ocean observations are crucial to understand both natural processes occurring in the ocean and human influence on the marine ecosystems. The information they provide increases our understanding and is therefore beneficial to the society as a whole because it contributes to a more efficient use and protection of the marine environment, upon which human livelihood depends. In addition the oceans, which occupy 73% of the planet surface and host 93% of the biosphere, play a massive role in controlling the climate. Eulerian or fixed-point observatories are an essential component of the global ocean observing system as they provide several unique features that cannot be found in other systems and are therefore complementary to them. In addition they provide a unique opportunity for multidisciplinary and interdisciplinary work, combining physical, chemical and biological observations on several time scales. The fixed-point open ocean observatory network (FixO3) integrates the 23 European open ocean fixed-point observatories in the Atlantic Ocean and in the Mediterranean Sea. The programme also seeks to improve access to key installations and the knowledge they provide for the wider community, from scientists, to businesses, to civil society. This paper summarises the rationale behind open ocean observatories monitoring the essential ocean variables. It also provides an estimate of the costs to operate a typical fixed-point observatory such as those included in the FixO3 network. Finally an assessment of the type of data and services provided by ocean observations and their value to society is also given

    Decellularized silk fibroin scaffold primed with adipose mesenchymal stromal cells improves wound healing in diabetic mice

    Get PDF
    Introduction: Silk fibroin (SF) scaffolds have been shown to be a suitable substrate for tissue engineering and to improve tissue regeneration when cellularized with mesenchymal stromal cells (MSCs). We here demonstrate, for the first time, that electrospun nanofibrous SF patches, cellularized with human adipose-derived MSCs (Ad-MSCs-SF) or decellularized (D-Ad- MSCs-SF) are effective in the treatment of skin wounds, improving skin regeneration in db/db diabetic mice. Methods: The conformational and structural analyses of SF and D-Ad-MSCs-SF patches were performed by scanning electron microscopy, confocal microscopy, Fourier transform infrared spectroscopy and differential scanning calorimetry. Wounds were performed by a 5mm punch biopsy tool on the mouse\u2019s back. Ad-MSCs-SF and D-Ad-MSCs-SF patches were transplanted and the efficacy of treatments was assessed by measuring the wound closure area, by histological examination and by gene expression profile. We further investigated the in vitro angiogenic properties of Ad-MSCs-SF and D-Ad-MSCs-SF patches by affecting migration of human umbilical vein endothelial cells (HUVECs), keratinocytes (KCs) and dermal fibroblasts (DFs), through the aortic ring assay and, finally, by evaluating the release of angiogenic factors. Results: We found that Ad-MSCs adhere and grow on SF, maintaining their phenotypic mesenchymal profile and differentiation capacity. Conformational and structural analyses on SF and D-Ad- MSCs-SF samples, showed that sterilization, decellularization, freezing and storing did not affect the SF structure. When grafted in wounds of diabetic mice, both Ad-MSCs-SF and DAd- MSCs-SF significantly improved tissue regeneration, reducing the wound area respectively by 40% and 35%, within three days, completing the process in around 10 days compared to 15-17 days of controls. RT2 gene profile analysis of the wounds treated with Ad- MSCs-SF and D-Ad-MSCs-SF showed an increment of genes involved in angiogenesis and matrix remodelling. Finally, Ad-MSCs-SF and D-Ad-MSCs-SF co-cultured with HUVECs, DFs and KCs, preferentially enhanced the HUVECs\u2019 migration and the release of angiogenic factors stimulating microvessel outgrowth in the aortic ring assay. Conclusions: Our results highlight for the first time that D-Ad-MSCs-SF patches are almost as effective as Ad-MSCs-SF patches in the treatment of diabetic wounds, acting through a complex mechanism that involves stimulation of angiogenesis. Our data suggest a potential use of DAd- MSCs-SF patches in chronic diabetic ulcers in humans

    Cenozoic Antarctic Glaciation: an integrated climate-ice sheet model approach.

    No full text
    A prominent climate change of the Earth system was the onset of Antarctic glaciation near the Eocene-Oligocene transition (~34 million years ago). The causes of this change are not yet well understood. The most common hypothesis are that glaciation resulted from a cooling of Antarctica due to plate tectonic repositioning and associated changes in ocean circulation or by a response to declining atmospheric pCO2 supported by the Earth's orbital configuration relative to the Sun. In this thesis these hypotheses are tested through sensitivity experiments with a new climate-ice sheet modeling approach, which takes into account the global oceanic and atmospheric circulation and the Antarctic cryosphere. The numerical models chosen for this study are Huybrechts (1993) ice sheet model for the Antarctic ice sheet (AIS), and COSMOS, composed of the atmospheric general circulation model ECHAM5 and the ocean general circulation model MPI-OM. MPI-OM is initialized by runs of the Large Scale Geostrophic ocean model (LSG).The modelling procedure is validated for modern climate and the results compared to observational data. Furthermore the robustness of the method is assessed by analysing the climate and AIS response to a doubling of the global atmospheric carbon dioxide (pCO2). The AIS modelled with this methodology is comparable with observations. This method is also usable to investigate changes in the atmospheric pCO2.The response of the Antarctic continent to the opening of the Drake Passage and to the establishment of the Antarctic Circumpolar Current (ACC) is examined. Two different climate states have been reproduced with global tectonic configurations including open and closed Passage. A reduced southward heat flux and a decrease of both water and air temperature is found around and over Antarctica when the gateway is open. A more massive ice sheet develops on the continent in this case. The influence of a specific concentration of pCO2 in the atmosphere for the onset of a major AIS is investigated. The climate with a tectonic configuration similar to the Late Eocene and under different pCO2 are analyzed and the response of the AIS is examined. Lower atmospheric pCO2 levels result in lower surface atmospheric temperature over the Antarctic continent and in larger AIS. The effect of a favorable orbital configuration on the early formation of the AIS is analyzed. Four different experiments are conducted with the land-sea distributions similar to the Late Eocene and to the Late Oligocene by applying two distinct orbital setups, the modern and one yielding the coldest Antarctic summer. The effect of a favorable orbital position is to help the initial growth of the AIS under both tectonic configurations.The results of this study support the idea that the establishment of the ACC and low atmospheric pCO2 levels could have comparable significance in creating the conditions for a wide continental glaciation whereas orbital forcings do not seem to have a major impact

    Vereisung der Antarktis im Känozoikum: Anwendung eines integrierten Klima-Eisschild-Modells.

    No full text
    A prominent climate change of the Earth system was the onset of Antarctic glaciation near the Eocene-Oligocene transition (~34 million years ago). The causes of this change are not yet well understood. The most common hypothesis are that glaciation resulted from a cooling of Antarctica due to plate tectonic repositioning and associated changes in ocean circulation or by a response to declining atmospheric pCO2 supported by the Earth's orbital configuration relative to the Sun. In this thesis these hypotheses are tested through sensitivity experiments with a new climate-ice sheet modeling approach, which takes into account the global oceanic and atmospheric circulation and the Antarctic cryosphere. The numerical models chosen for this study are Huybrechts (1993) ice sheet model for the Antarctic ice sheet (AIS), and COSMOS, composed of the atmospheric general circulation model ECHAM5 and the ocean general circulation model MPI-OM. MPI-OM is initialized by runs of the Large Scale Geostrophic ocean model (LSG).The modelling procedure is validated for modern climate and the results compared to observational data. Furthermore the robustness of the method is assessed by analysing the climate and AIS response to a doubling of the global atmospheric carbon dioxide (pCO2). The AIS modelled with this methodology is comparable with observations. This method is also usable to investigate changes in the atmospheric pCO2.The response of the Antarctic continent to the opening of the Drake Passage and to the establishment of the Antarctic Circumpolar Current (ACC) is examined. Two different climate states have been reproduced with global tectonic configurations including open and closed Passage. A reduced southward heat flux and a decrease of both water and air temperature is found around and over Antarctica when the gateway is open. A more massive ice sheet develops on the continent in this case. The influence of a specific concentration of pCO2 in the atmosphere for the onset of a major AIS is investigated. The climate with a tectonic configuration similar to the Late Eocene and under different pCO2 are analyzed and the response of the AIS is examined. Lower atmospheric pCO2 levels result in lower surface atmospheric temperature over the Antarctic continent and in larger AIS. The effect of a favorable orbital configuration on the early formation of the AIS is analyzed. Four different experiments are conducted with the land-sea distributions similar to the Late Eocene and to the Late Oligocene by applying two distinct orbital setups, the modern and one yielding the coldest Antarctic summer. The effect of a favorable orbital position is to help the initial growth of the AIS under both tectonic configurations.The results of this study support the idea that the establishment of the ACC and low atmospheric pCO2 levels could have comparable significance in creating the conditions for a wide continental glaciation whereas orbital forcings do not seem to have a major impact

    Implementing project management principles in geosciences

    No full text
    Together with scientific creativity, good research project management is one of the keys for a successful project. This special issue compiles a collection of articles on several topics related to project management in Earth sciences. It is an initiating step towards building a body of literature in (geo)science project management in response to the need of research project managers to share their daily work, experiences and knowledge. It is composed of six original papers that present technical tools, interpersonal skills and focused areas of practice (ocean and polar sciences)

    How to get your message across? Designing an impactful knowledge transfer plan in a European project.

    No full text
    Academic research is largely characterized by scientific projects striving to advance understanding in their respective fields. Financial support is often subject to the fulfilllment of certain requirements, such as a fully developed knowledge transfer (KT) plan and dissemination strategy. However, the evaluation of these activities and their impact is rarely an easy path to clarity and comprehensiveness, considering the different expectations from project officers and funding agencies or dissemination activities and objectives. With this paper, based on the experience of the management and outreach team of the EU-H2020 APPLICATE project, we aim to shed light on the challenging journey towards impact assessment of KT activities by presenting a methodology for impact planning and monitoring in the context of a collaborative and international research project. Through quantitative and qualitative evaluations and indicators developed in 4 years of the project, this paper represents an attempt to build a common practice for project managers and coordinators and establish a baseline for the development of a shared strategy. Our experience found that an assessment strategy should be included in the planning of the project as a key framing step, that the individual project's goals and objectives should drive the definition and assessment of impact and that the researchers involved are crucial to implement a project's outreach strategy

    ESM-TOOLS: A tool for Earth-System-Modellers

    No full text
    corecore